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Correlated Default Risk

Abstract

Using a comprehensive and unique data set of default probabilities from Moody’s, we examine

correlations between default risk for over 7,000 US public firms. This is the first paper to empirically

document the correlation structure both in the time-series and in the cross-section across almost all

US non-financial firms. We find that default probabilities of issuers vary substantially over time, and

are positively correlated. Moreover, the correlations across firms also varies over time systematically,

in a manner that is related to an economy-wide level of default risk. Joint default risk increases

as the default risk in the economy increases. Our results also suggest that the magnitude of joint

default depends on the quality of issuers; highest quality issuers have higher default correlations than

medium grade firms. The results in this paper are informative for managers of credit portfolios, and

for structured products such as collateralized debt obligations.
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1. Introduction

One of the most important open questions in financial markets concerns the behavior

of default correlation, that is, the manner in which across-issuer likelihood of default co-

varies over time. An understanding of this correlation is of obvious importance to banks,

traders, and other operatives in corporate-debt markets from the standpoint of overall port-

folio management as well as for the pricing/hedging of such instruments as Collateralized

Debt Obligations (CDOs). It is also of considerable interest to regulators; indeed, the Basel

Committee on Banking Supervision has repeatedly urged a move towards a system in which

the capital adequacy requirements of banks are based on the overall credit-riskiness of the

banks’ aggregate portfolios. Yet, in contrast to the substantial theoretical and empirical

literature on default risk at the level of the individual issuer,1 the research on default cor-

relations is virtually empty. It is not even known whether joint default risk is affected by

systematic factors.

Our paper takes the first substantial step in this direction. We provide a comprehensive

empirical investigation of default correlations for over 7,000 US firms, using a database of

issuer-level default probabilities from Moody’s. This database, covering the period 1987-

2000, provides a unique opportunity to investigate joint default risk across almost all US

non-financial public firms. Our approach of using firm-level default probabilities enables a

comprehensive investigation of joint default risk in both the cross-section and time series,

and allows us to account for both time-varying default probabilities and correlations between

defaults.

Our analysis confirms several intuitive features one might associate with the behavior

of default risk such as its variation over the business cycle. More importantly from the

standpoint of using the results, it provides quantitative expression to this behavior. We also

identify several new and important features of default correlation that have not received

much comment in the literature, such as, for example, the differences between the behavior

of default correlation in high-rated firms and that in lower-rated firms. In particular, we

uncover evidence that default risk has a systematic component. A more detailed description

of our main findings follows.

First, confirming intuition, we show that default probabilities of individual firms of a

given rating class vary substantially over time. This time-variation is linked directly to

the economic environment. Default probabilities are low, on average, in the benign credit

1For theoretical modeling of default and credit risk, see the structural models of Merton (1974), Longstaff

and Schwartz (1995), Collin-Dufresne and Goldstein (2001), and reduced form models of Duffie and Singleton

(1999), Jarrow and Turnbull (1995), Das and Tufano (1996), Jarrow, Lando and Turnbull (1997), Madan

and Unal (1998), and Das and Sundaram (2000), among others.
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environment of 1993-97 and show steep increases in the periods corresponding to the 1991-

92 recession, as well as the 1999-2000 period that foreshadowed the most recent recession.

For example, the median default probability of Baa and Ba firms increases from 0.77% in

the period 1/94-4/97 to 1.17% in the period 6/97-10/00. Default probabilities of higher

quality firms show an even steeper increase.

Second, we provide extensive evidence that there are systematic components to default

risk. Specifically, we find that correlations between changes in default intensities are non-

negative on average even after autocorrelation in default intensities is taken into account.

We show that this conclusion is robust across time-periods and sub-groups of firms. Prin-

cipal component analysis confirms the presence of a large first principal component; for

example, over the most recent sub-period in our sample, the first principal component ex-

plains more than 50% of the variation in changes in default intensities for high grade firms.

The first two principal components combined explain a substantial portion of the variation

across all sub-periods and rating classifications.

Third, we find that correlations between default intensities of individual firms are not

stable over time, but vary in tune with the business cycle. Correlations increase with the

level of default risk in the economy. Thus, joint default risk is directly linked to the business

cycle, and this evidence provides additional support for the finding that default risk is not

fully diversifiable. In addition, that correlations are not stable over time is of particular

importance for the portfolio modeling of credit risk.

Fourth, we document cross-sectional differences across rating classes. We find that firms

of the highest credit quality have the highest correlations, and that this is especially so in

time periods when the overall level of default is high. This empirical finding indicates that

firms of high credit quality are especially exposed to an economy wide factor. Moreover,

an analysis of the principal components affecting default intensities suggests structural

differences across quality groups. From a credit-risk modeling standpoint, this implies it

may be necessary to fit reduced form models separately across rating classes.2

Fifth, to further understand how the systematic component of default affects joint default

risk, we model time-varying default probabilities and correlations jointly in a parsimonious

statistical model. To account for our observation that default probabilities vary with the

business cycle, we allow the economy wide default risk to be regime-dependent. We find

strong support for a two-regime model (a high default regime and a low default regime)

with the former having a mean default level more than twice that of the latter. Importantly,

2This finding complements that of Duffee (1999). Duffee finds that estimated parameters of risk-neutral

default intensity processes are unstable across rating classes.
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we find that each regime shows a different correlation structure: default correlations are,

on average, higher in the high default regime as compared with the low default regime.

Our results, in summary, establish that both default probabilities and default correlations

time-vary in relation with an economy-wide factor and provide a quantitative description

of the extent of this time-variation. These results provide testable implications for the

dynamics of credit spreads where systematic default risk is priced (Jarrow, Lando and Yu

(2001), El-Karoui and Martellini (2002)). First, credit spreads change over time because

changes in default probabilities affect expected credit loss. Second, credit spreads may also

vary because variation in the systematic component of default intensities may affect the

risk premia in credit spreads. Because correlations between defaults increase with the level

of default risk, both expected loss and risk premia increase simultaneously. Thus, credit

spreads will systematically change more than would be indicated by changes in expected loss.

The presence of time-varying correlation linked to an economy-wide factor may potentially

explain why it has been difficult to relate structural models to changes in credit spreads

(Collin-Dufresne, Goldstein and Martin (2001)).

Our findings have direct implications for the management of default risk on a portfolio

basis, as well as the pricing of Collaterized Debt Obligations and other securities whose cash

flows are determined by risk at the portfolio level. In particular, our findings indicate that

clustering of defaults in a portfolio during a downturn in the economy occurs because of an

increase in default probabilities and an increase in correlation between defaults. Ignoring

time-variation of correlations may significantly understate portfolio default risk. That the

correlation structure varies over time also implies that a non-linear model is required to

describe evolution and pricing of default risk across firms (for example, see recent work by

Collin-Dufresne, Goldstein and Helwege (2002)).

Our analysis complements that of Zhou (2001). Within the context of a structural model

of default, Zhou (2001) considers the implications of correlated asset returns on correlations

between defaults. Our empirical findings are consistent with his conclusions that default

correlations are positive and time-varying. In addition, our empirical finding that default

correlations time-vary with an economy wide factor is potentially consistent with structural

models that explicitly account for time-varying and asymmetric asset correlations.

The rest of this paper is as follows. In Section 2, we provide the framework for our

empirical work. Section 3 describes Moody’s database of default probabilities. In Section

4, we investigate correlation between default intensities both in the time-series and cross-

section. Section 5 shows that a parsimonious regime-shifting model is useful for jointly

describing time-variation in default intensities and time-variation in correlations between
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default intensities. Section 6 examines the issue of conditional independence of default

times. The last section offers conclusions and extensions.

2. Understanding Default Correlations

In this section, we present a framework for our empirical investigation. For a firm i, we

define a stopping time τi. For a given horizon T , default occurs if the stopping time τi ≤ T .

We define the probability of default, PDi(t, T ), at time t as,

(1) PDi(t, T ) = Pr[τi ≤ T ].

With appropriate assumptions, this setup is consistent both with reduced form, hazard

rate models (Jarrow and Turnbull (1995), Madan and Unal (1998), Duffie and Singleton

(1999)), as well as with structural models of Merton (1974), Longstaff and Schwartz (1995),

and Collin-Dufresne and Goldstein (2001). In the former, the probability of default is

determined by an exogenously specified instantaneous default intensity or hazard rate, λi(t).

Given the stochastic process followed by λi(t), PDi(t, T ) can be calculated as

(2) PDi(t, T ) = Et

[
1− exp

(
−
∫ T

t
λi(τ)dτ

)]
,

where Et is the expectations operator under the physical measure. In the context of struc-

tural models, the value of the firm is modeled as a stochastic process, and PDi(t, T ) can

be derived as an output of the model. In reduced form models, PDi(t, T ) and λi(t) are

directly the primitive modeling variables. Below, we follow the spirit of the reduced form

literature. Thus, view the default process as a Cox or doubly stochastic Poisson process

[see Lando (1994)] in the following sense. First, the default intensity, λi(t), is a stochastic

process. Second, conditioned on the level of default intensity, the default event itself is a

random event. The process for λi(t) provides a complete description of the default risk for

firm i.

Given two firms, i = 1, 2, our object of interest is the probability of joint default, Pr(τ1 ≤
T, τ2 ≤ T ). The doubly stochastic assumption implies that defaults are independent given

the time t default intensity. In this case, the probability of joint default will be determined

by the correlation structure of the default intensities, λi(t). Define the correlation between

shocks to λ1(t) and λ2(t) as ρ12. Given an estimate of ρ12, and a model for the default

intensity processes, we can compute Pr(τ1 ≤ T, τ2 ≤ T ) either analytically or numerically.

As an illustration, suppose the joint dynamics of λi(t), i = 1, 2, are defined by,

λi(t) = αi + βiλi(t− 1) + ei(t),
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where corr(e1, e2) = ρ12. We can now estimate Pr(τ1 ≤ T, τ2 ≤ T ), using a Monte Carlo

simulation with λi(t) as the stochastic jump arrival intensity of a Poisson process whose

first jump occurs at default. For example, let α1 = α2 = 0.012%, β1 = β2 = 0.94 and

λ1(0) = λ2(0) = 0.2% , (calibrating to recently observed parameters of high grade firms,

see our Tables 2 and 5 below). For ρ12 ∈ (−0.6,−0.2, 0.0, 0.2, 0.6), probability of joint

default over a 5 year horizon, Pr(τ1 ≤ 5, τ2 ≤ 5), is 0.64%, 1.56%, 1.80%, 2.36% and 2.96%,

respectively. The correlation between default intensities has a substantial effect on the joint

probability of default.3

Default intensities may be correlated because of the presence of systematic factors af-

fecting the probability of default. For example, in Duffee (1999), the risk-free rate is the

systematic factor affecting default intensities of all firms. In addition to having the risk-free

rate, Bakshi, Madan and Zhang (2001) also include the long-term mean of the risk-free rate

as an additional factor. Additional systematic factors that drive the value of the firm and

its volatility will also affect default intensities.

We summarize below the implications of existing theoretical and empirical work for ρij .

(1) Default correlations are positive. Existing theoretical and empirical research sug-

gests that most factors that are determinants of default probabilities are positively

correlated, including asset values and asset volatilities. Moreover, changes in debt-

equity ratios are also correlated across firms in the economy. This suggests that we

should expect default correlations to be positive. Zhou (2001) provides an example

of a structural model where positive correlations between asset values imply posi-

tive correlation of defaults. Empirical evidence that credit spreads across bonds are

positively correlated is also consistent with a positive correlation between default

intensities under the physical measure.

(2) Default correlations will vary in the cross-section. For the same level of asset cor-

relation, Zhou (2001) notes that firms with a higher debt level are more highly

correlated. Controlling for debt level, cross-sectional variation will, however, be re-

lated to the systematic factors affecting the default intensities. In the absence of

evidence that indicates default intensities are equally sensitive to systematic fac-

tors across the range of firms, especially within distinct credit classes, it appears

appropriate to hypothesize that default correlations vary in the cross-section.

3The Monte Carlo simulation, done with 10,000 simulations, assumes that defaults are independent when

conditioned on λt (also see Das, Fong and Geng (2001)). This assumption is not necessary for the analysis

of the paper. If defaults are not independent, joint default risk will be affected by the actual incidence of

defaults, in addition to the correlation structure between the default intensity processes.
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(3) Default correlations are time-varying. Within the class of structural models, for

fixed credit quality, time-variation in asset correlations and time-variation in asset

volatilities both imply that default correlations will also vary. In particular, it has

been noted that changes in asset correlations are related to changes in asset returns.

Ang and Chen (2001) show that equity correlations for negative equity return are

larger than for positive returns, and especially so for large negative returns. Because

default probabilities increase with decline in asset values, we expect to observe

variation in default correlation that is linked to the level of the default probabilities,

or to the state of the economy.

The primary focus of this paper is to investigate the presence and properties of the correla-

tion structure between default intensities. In particular, we are interested in understanding

any systematic risk affecting default intensities.

3. The Data: Default Probabilities

This research takes advantage of the unique data resources of Moody’s Investors Service.

Moody’s, through its subsidiary Moody’s Risk Management Services (“MRMS”), collects

and maintains extensive databases of default events, default recoveries and other related

information on rated and unrated, public and private, companies. MRMS regularly pub-

lishes default and recovery rate studies based on this database. In particular, MRMS uses

this data to calibrate a model of short-term default risk for both public and private firms.

The output from their RiskCalc model is an estimate of a one-year default probability for

an individual issuer.

Details of the RiskCalc model and its econometric fit are described in Falkenstein (2000),

Sobehart, Stein, Mikityanskaya and Li (2000), and Falkenstein, Ibarra, Kocagil, and Sobe-

hart (2001). The model uses as input firm-specific information: (a) company financial

statement information (including leverage, profitability, and liquidity measures), (b) equity

market information, in particular, equity volatility, and (c) Moody’s ratings, if available.

The data used in this paper consists of a monthly time series of probabilities of default

(“PDs”) for US non-financial public firms over the period January 1987 to October 2000.

Although the potential universe may include as many as 12,000 firms, the actual number of

firms for which a PD is available is much smaller and varies by observation date, typically

because of insufficient data, defaults or mergers. We employ two sample sets of firms in

our empirical work. First, we construct a sample of firms with continuous data over the

entire sample period. This results in a sample of 1705 firms. Second, we sub-divide our

sample period into four sub-periods, and include all firms that have continuous observations
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within any of these sub-periods. The choice of four sub-periods is motivated by the trade-

off between having sufficient time series observations for estimation of correlation matrices,

yet ensuring that the period is relatively homogeneous, so that differences in correlation

matrices across sub-periods may be observed. The sub-periods are of almost equal length,

and comprise the periods, 1/87-4/90, 5/90-12/93, 1/94-4/97, and 5/97-10/00 (the first

three periods are of 42 months and the last of 40 months). Finally, allowing all firms with

continuous data in any sub-period to be included in the sample reduces a bias towards

higher quality firms, as higher rated firms are more likely to have continuous observations

of default probabilities. The total number of unique firms included in this sample is 7,363.

For our primary analysis, we group firms by credit rating. Each firm that has a rating is

classified by Moody’s into one of 6 rating classes, in order of descending credit quality. In

addition, there is a seventh rating class for firms that are unrated, but yet have a Moody’s

PD. For tractability, we divide all rated firms into three groups: High Grade, Medium

Grade, and Low Grade, each comprising of two rating classes. Thus, high grade firms

combine rating classes 1 and 2, medium grade combine rating classes 3 and 4, and low

grade combine rating classes 5 and 6. A firm is classified into a rating class according

to its average rating over the sub-period. Panel A of Table 1 provides the description of

the classification by rating class. For robustness of some of the results, we also form an

alternative grouping by industry sector. There are ten sectors, classified by SIC codes.

These are described in Panel B of Table 1.

Table 2 provides the descriptive statistics of the cross-sectional distribution of mean

default probability for the firms in our sample, classified by credit rating and industry

sector. The total number of unique firms in our sample range from 3,202 to 5,170 over the

sub-periods. The average number of firms in the high, medium and low rated groups are

215, 405 and 184, respectively. As the universe of firms rated by Moody’s is relatively small,

the vast majority of the firms in our sample are unrated, ranging from 2724 in sub-period

I to 4142 in sub-period IV. As might be expected, the mean PD increases monotonically

as the average rating declines, across each sub-period. For instance, the mean PD in sub-

period IV is 0.23%, 1.17% and 5.65% for high, medium and low grade firms, respectively.

The mean PD of unrated firms is in the range of 1.63% to 2.45%, higher than the average

PD of medium-rate firms, indicating that if these firms were rated, they are likely to be in

lower rating groups.

When classified by industry, more than half the firms in our sample belong to the manu-

facturing sector, Sector 4. The sector with the least number of firms is Sector 1 (agriculture,

forestry and fishing) with as few as 14 firms in sub-period II. Although there is variation

across PDs within the cross-section, this variation is small compared with that across credit



10 CORRELATED DEFAULT RISK

classes, indicating that each sector has a mix of rating classes, with a substantial number

of firms in the lower rating categories. Firms in sectors 1 and 5 have the lowest average

PD, while firms in sector 10 have the highest. The high default risk of sector 10 arises from

firms of SIC group 99 (firms of industries that cannot be classified into any of the other SIC

groups).

Comparing PDs across sub-periods, we see that there is considerable time-variation. On

average, PDs are the lowest in sub-period III, and highest in sub-period IV. This pattern

is remarkably consistent across every classification (the only exception being sector 10),

suggesting that the time-variation in PDs is driven by a common economic factor that

affects all firms. Figure 1 plots the monthly time series of default probability, averaged over

all firms that had data available for that particular month in our sample period. The figure

confirms the observation from Table 2 that PDs exhibit time-variation across the average

firm in the economy. Moreover, PDs seem to lie in two distinct regimes, i.e., for some

periods, they tend to be low, and in others, they spike up dramatically. Casual observation

suggests that the spikes can be linked to economic events. The sharp increase in PDs in

sub-period I corresponds to the aftermath of the 1987 stock market crash, and that in sub-

period II corresponds to the 1990-91 recession. Finally, the sharp increase in sub-period IV

can be linked to the increased volatility of the equity markets and subsequent downturn in

both equity values and economic growth.

How does the mean default probability relate to the actual number of defaults in the

economy? Over our sample period, data from Moody’s indicates that there were a total

of 831 individual issuer defaults, with the number of defaults in each month of our sample

ranging from zero to a maximum of 19. Figure (2) plots the mean default probability

against the number of actual defaults in the economy for each month of our sample period.

It is evident that the mean default probability is related to the number of defaults in the

economy. More formally, in a Poisson regression, we consider the mean default probability

in month t− 1 as an explanatory variable for defaults in month t. We estimate the model,

lnE [NUMDEF (t)] = β0+β1MEANPD(t−1)+β2NUMDEF (t−1), where NUMDEF (t)

represents the number of defaults and MEANPD(t) the mean default probability in month

t, respectively. The lagged value of NUMDEF is included as a proxy for the business

cycle, and provides a simple alternative model to evaluate the importance of MEANPD

in determining defaults. The estimated coefficient β1 is significant with a p-value of 0.00,

with the model having a reasonable fit with a pseudo-R2 of 20%. A likelihood ratio test

for the hypothesis that β1 = 0 is likewise rejected with a p-value of 0. Thus, at the

aggregate economy level, there is evidence that the mean default probability helps explain

the incidence of defaults.
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We use the time-series of PDs to estimate correlations between default risk. As in previous

research, we first transform the 1-year default probability for firm i to the corresponding

“default intensity”, λi,

(3) λi = − ln(1− PDi),

where λi is interpreted as the constant default intensity that corresponds to a 1-year default

probability, PDi ∈ [0, 1). Given the observed time-series of default intensities, λi(t), the

objective is to infer the correlations between unexpected changes in λi(t) and λj(t). Here,

we make a distinction between correlation of levels of the default intensity, and unexpected

changes in the levels of the default intensity. The former includes any known dynamics; for

instance, if there is “stickiness” in ratings over a business cycle, it would get reflected in

correlation between levels of default intensities. The latter reflects any co-movement that

remains after modeling the time-series behavior of the default intensity. This allows direct

comparison of our results to reduced form models.

4. Default Correlations

In this section, we examine both the cross-sectional and time series properties of the

correlation between default intensities. We also test the main implications of structural

and reduced form models of default - that default correlations are likely to be, on average,

positive, time-varying and different in the cross-section.

4.1. Correlations in Default Risk. We begin by examining how correlations between

default probabilities vary within sub-groups of firms, where the expected default intensity is

constant over the time-period. Over each of the four sub-periods, we estimate the correlation

matrix by modeling the default probability as

(4) λi(t) = λ̄i + εi(t),

where λ̄i is the average default intensity over the sample period. The correlation between

the default intensities of firm i and j, ρij , is then computed as the correlation between εi

and εj over this period.

Table 3 reports the average of the pair-wise correlations of firms within each industry

sector and credit class, over each sub-period of the sample period. For n firms, the average

correlation is calculated as the arithmetic average over the n(n−1)/2 pair-wise correlations.

A firm is included in each sub-period only if it has a complete time-series of observations

over this sub-period. Firms that do not have a Moody’s rating are not included in the

classification by rating class.
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Panel A reports the statistics for the quality groups. Three observations can be immedi-

ately made. First, across all credit classes and in every period, default correlations are, on

average, positive. The mean correlation ranges from 0.00 to 0.62 across periods and credit

classes. The table also reports the fraction of the estimated pair-wise correlations that are

positive. The results mirror those of the mean; except for sub-period III, the fraction of

positive correlations exceed 0.50 by a large margin. There are also clear cross-sectional dif-

ferences across the credit classes. In particular, averaging over the sub-periods, the highest

correlation amongst the rating classes is between firms with the highest ratings. Except for

sub-period III, the positive correlations are consistent with the main implication of struc-

tural models that positive correlations between firms in the economy is likely to result in

positive correlations between default probabilities.

Second, the average correlation within each group varies over the sub-periods. For the

high and medium grade firms, there appears to be a clear pattern, correlations decline from

period I to III and then increase in period IV. In particular, across all groups, period III has

the lowest average correlation, which is close to zero. From the previous section, recall that

period III is also the period with the lowest average default intensity. We will investigate

this further below. Overall, these results suggest that there may be commonality in the

factors that affects correlations across the groups.

Finally, there are cross-sectional differences in the time-variation in correlation across

credit classes. The median correlation ranges from 0.05 to 0.58 for high rated firms, showing

a steep decline in sub-period III and a sharp subsequent increase. In contrast, the range

of correlations is 0.02-0.35 and 0.00-0.29 for medium and low rated firms, respectively.

High rated firms are have the highest correlations on average, and show the greatest time-

variation.

In all of the above results, firms were classified by rating. Although results are likely to be

less sharp when we compare firms of potentially very different rating (and leverage) groups,

such results can still serve as a robustness test. We, therefore, classify all firms into industry

sectors by SIC code. Here, we also include non-rated firms. Panel B of Table 3 reports the

results. Average correlations are predominantly positive; across all sub-groups and sub-

periods, there is only one instance where the median correlation is negative. Correlations

are time-varying; moreover, in 8 of the 9 groups, the minimum average correlation is in

period III. The exception is sector 10. Although, on average, sectors differ in the average

correlation, in period III, the difference is minimal. For example, the range of the median

correlations across all sectors is 0.15 to 0.54 for sub-period I, and -0.04 to 0.08 for sub-period

III. The two sectors with the highest median correlation are agriculture (sector 1) and the

transportation sector (sector 5). Not surprisingly, firms in sector 9, that is populated mainly
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with firms of SIC code 99 (non-classifiable industries) have the least correlation, and show

the least time-variation.

Overall, these results indicate that default correlations are positive, time-varying in a

systematic manner, and different across the cross-section. Interestingly, high quality firms

have the highest correlations. Although, correlations are time-varying for all firms, there are

cross-sectional differences; firms of the highest quality exhibit the greatest time-variation.

The period where the median correlation between default probabilities across all rating

classes is low (close to zero) also corresponds to a period where default probabilities are

also low. In the sections that follow, we investigate these results in more detail, check

robustness of results to modeling assumptions, and suggest a means of modeling time-

variation in correlations.

4.2. Correlations with Dynamic Default Probabilities. The correlations in the pre-

vious section were computed under the assumption that there is no time-variation in default

probabilities. Are the conclusions of the previous section robust when we allow for time-

varying default probabilities? Following Duffie and Singleton (1999) and the empirical

evidence in Duffee (1999), we model the default intensity as a discrete time AR(1) process,

(5) λi(t) = αi + βiλi(t− 1) + ε̃i(t).

The correlation between firms i and j is the correlation between ε̃i and ε̃j , and takes into

account the dynamics of the default intensity.

Table 4 reports a summary of the parameter estimates for equation (5) across each of the

4 sub-periods, and all firms in the sample set. The median estimate of βi across all periods

and rating classes is in the range of 0.90 to 0.94, with over 99% of the estimates significant.

The variation in αi in both the cross-section and time-series is similar to the variation in

the average PD in Table 2.

Table 5 reports the median correlations across each classification over the four sub-

periods, as well as the fraction of correlations that are positive. Panel A reports the results

for classification by rating, and Panel B for classification by sector. Comparing with Table

3, we can observe that the median correlation for each group is lower. For instance, in

sub-period I, the median correlation across high-grade firms reduces from 0.54 to 0.37, for

medium grade-firms from 0.35 to 0.23, and for low grade firms from 0.17 to 0.16. The same

conclusion holds across all sector classes; for example, the median correlation for firms in

the manufacturing sector (Sector 5) reduces from 0.42 to 0.13.

Although the magnitudes of the correlation are different, the variation in the median

correlation in the cross-section and time-series is consistent with that observed earlier in
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Table 3. Default correlations are predominantly positive. For the rating groups, the median

correlation is in the range of 0.01 to 0.37. Similarly, the fraction of positive correlations is

in the range of 52% to 89%. Results across industry sectors are similar, although of much

lower magnitude.

Second, the median correlation time-varies over the sub-periods; in particular, it is much

lower in sub-period III, as compared with sub-period I or IV. Third, the cross-sectional

variation across groups is lowest in period III. For instance, the cross-sectional variation

in median correlations across rating groups in sub-period I ranges from 0.16 to 0.37. In

contrast, the range in sub-period III is 0.00 to 0.02. The same conclusion can also be drawn

from the industry sectors.

The results of both Table 3 and Table 5 raise two economic questions. First, what can

explain the pattern of time-variation in correlation, in particular, the coincidence of low

default intensities with low correlations between default intensities in sub-period III? A

possible explanation may stem from the observation that equity correlations are asymmet-

ric (Longin and Solnik (2001) and Ang and Chen (2001)), which we consider in more detail

in the sections that follows. A second question that arises is whether the cross-sectional

variation across credit classes implies structural differences in how underlying factors af-

fect default intensities within each credit class. This hypothesis is also motivated by the

observation that correlations for firms within industry sectors are consistently lower (as

sectors combine firms of different rating classes). We investigate this question of structural

difference across rating classes in more detail below.

Consider an analysis of the principal components of the residuals in equation (5). Table

6 reports the fraction of the variance of the residual, explained by the first, two, and four

principal components respectively. Results are reported for all credit classes, and, as a

robustness test, for 5 of the 9 industry sectors.

The results confirm the earlier observations. First, a few principal components explain

a substantial portion of the variance of the residual variance. Across sub-period I, the first

two factors explain 95.20%, 29.45%, 34.98% of the variance for high, medium and low grade

bonds, respectively. Similarly, across the sectors, the first two factors explain from 22.78%

(for sector 9) to 91.49% (for sector 1). There is clear evidence of common factors affecting

default intensities for each credit class. Second, the effect of these common components is

time-varying. For example, for high grade firms, the amount of variance explained varies

from 27.08% in sub-period III to 95.20% in sub-period I. Finally, for 5 of the 8 groups,

the fraction of variance explained by the first few principal components is the lowest in

sub-period III.
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Figure 3 graphs the fraction of the variance explained in ε̃i by up to 10 principal com-

ponents for the three credit classes. Results are shown across each of the four sub-periods.

Both Figure 3 and Table 5 indicate that there are substantial differences in correlation

structure across rating classes. In particular, there is a substantial difference in correlations

between high grade firms compared with the others, and this is more marked in periods I

and IV.4 To verify if this is consistent with differing factors across rating classes, we com-

pute the correlation matrices for the first principal component for each of the three grades

of firms. The results are presented in Table 7. The correlation coefficients between the

first principal factor across rating classes shows wide variation over the periods. In periods

II and III, all three grades have their principal components positively correlated, but the

magnitude of correlation is much lower in period III. In periods I and IV, the first principal

component of the lowest rating class is negatively correlated with that of the highest rating

class. The first principal component of medium rated firms also shows unstable correlations

with that of both the other rating categories, being positive in only three of the four periods.

For robustness, we also considered the correlation between the second and third principal

components of each rating class with similar results.

The results indicate that, across the quality groups, there are structural differences in how

underlying factors affect default intensities. This finding has implications for the relative

spreads between high grade and other firms. In particular, it suggests that reduced form

models should be fitted separately across rating class, or allow for a credit-class related

factor. This conclusion is consistent with the analysis of Duffee (1999), who finds that

parameter estimates of the risk-neutral default intensity process differ across credit classes.

Although the preceding analysis has uncovered differences across credit classes, it has

little to say about the commonality of the factors affecting default intensities across credit.

Understanding whether or not there is a systematic factor that affects all default intensities

is especially relevant to understanding how default risk is priced. We explore this further

below.

4.3. Asymmetric Correlation of Default Probabilities. The results of the previous

section indicated that the median correlation between firms is time-varying, and, in partic-

ular, across every rating or industry group, the median correlation is lowest in period III.

Recent research in the equity market provides support for the hypothesis that correlations

between default intensities are time-varying. It has been often noted that equity returns

show an asymmetry in correlations, such that correlations between individual equities is

4The pattern of correlations of default risk, where high-grade debt has more covariation than low-grade

debt is also evidenced in the correlation of spreads, as in Exhibit 3 of Brown (2001).
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greater for negative returns than upside moves. Ang and Chen (2001) document that the

correlation of individual firm’s equity returns with the market return increases with neg-

ative market returns, and especially so when there are large negative returns. Increased

correlation in extreme returns has also been documented by Longin and Solnik (2001), and

modeled in Das and Uppal (2000) (see also Glosten, Jagannathan and Runkle (1993)). As

negative market returns also result in a higher probability of default, this suggests an in-

crease in default intensities are likely to be linked to an increase in the correlation between

default intensities. Thus, asymmetry in correlations in the equity markets would also sug-

gest an asymmetry in correlations in the credit markets, such that the correlation between

default intensities increases with an increase in default probabilities. The evidence that

correlations are lowest in period III, January 1994 to April 1997, which also has the lowest

average default probabilities, supports this hypothesis.

To further investigate the hypothesis that there is asymmetry of correlations in the credit

markets, we follow Longin and Solnik (2001) and Ang and Chen (2001) and construct

exceedance-correlation graphs. The graph is created as follows. Using all the firms in a

rating class, we compute the total default intensity (Λt) at each point in time (t), i.e.

Λt =
∑N

i=1 λi(t), ∀t. We then normalize the index Λt by subtracting its mean from each

observation and dividing by its standard deviation to construct the standardized total de-

fault intensity, Λ̄t. Within each rating class, we define the exceedance correlation between

firms i = 1, 2, ρ̄12(ν) [ρ̄12(−ν) ] as the correlation when Λ̄t ≥ ν [Λ̄t ≤ −ν],

ρ̄12(ν) = corr(ε̃1, ε̃2 | Λ̄t ≥ ν),

ρ̄12(−ν) = corr(ε̃1, ε̃2 | Λ̄t ≤ −ν),(6)

where ε̃i is defined in equation (5). Using exceedance levels from the set ν ∈ {0, 0.5, 1.0, 1.5},
we compute pair-wise exceedance correlations between firms within each credit class, and

graph the mean exceedance correlation against ν. The conditioning on Λ̄t allows us to link

any asymmetry in correlations to the economy as a whole, i.e., we can answer the question:

Do defaults get more correlated when the default risks in the economy as a whole are higher?

The exceedance graphs provides a visual representation of asymmetry. In the absence of

asymmetry, ρ̄12(ν) = ρ̄12(−ν), and the exceedance graph is symmetric.

Figure 4 presents the exceedance correlation plots for our 3 rating groups (high, medium

and low). The x-axis plots the exceedance levels and the y-axis the median correlation, ρ̄12,

in each credit class. We can make the following observations. First, across every credit class,

the levels of correlations are different for the left and right sides of the graph - the graphs

are strongly asymmetric. In particular, the correlations are higher for positive exceedance

levels as opposed to negative, i.e., ρ̄12(+0) > ρ̄12(−0). Thus, correlations between default
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intensities are higher when default intensities are rising. Second, we can also observe that

there are cross-sectional differences across credit grades in the level of asymmetry. In

particular, both the mean correlation as well as the degree of asymmetry is greatest for

high grade firms. This also indicates that the correlations for high grade firms are likely

to show greater time-variation in correlation, consistent with results reported in Table 5.

Third, as ν increases in absolute magnitude, one expects ρ̄ to decrease (Longin and Solnik

(2001)). The correlations do not decline to zero for large positive ν, suggesting an increase

in correlations for extreme increases in the overall default level of the economy.

The empirical evidence presented in this section provides support for two observations.

First, there is substantial time-variation in default probabilities that is linked to a system-

atic economy-wide factor - the overall default level of the economy. Second, correlations are

asymmetric. Default correlations decline as the overall level of default risk in the economy

declines. These conclusions support those from Tables 3 and Table 5, providing an explana-

tion why period III, representing the low volatility bull period of the 1990’s, is characterized

by low default correlations.

The qualitative graphical analysis is informative, but does not provide a formal descrip-

tion of the time-variation in correlations. In particular, how should we jointly model time-

varying default intensities and correlations? In the next section, we show how time variation

in correlations and default intensities can be jointly modeled. The model allows us to con-

struct formal statistical tests on whether the correlation structure differs across regimes, and

thus provide support for asymmetric, time-varying correlations, driven by an economy-wide

factor.

5. Modeling Time Varying Default Probabilities and Correlation

5.1. Determining Regimes for Default Intensities. The empirical evidence of the

previous section suggests that default correlations are time-varying, such that correlations

increase with the economy-wide probability of default. Moreover, such time-variation can

be motivated by empirical research in equity markets that indicates equity correlations

increase in down markets. This research also suggests how asymmetric correlation in the

credit market can be modeled. Ang and Chen (2001) show that a regime shifting model

is the most successful in capturing asymmetry in equity correlations. Regimes in equity

correlations would then suggest regimes in default correlations, where the regimes are related

to the level of default risk in the economy. A Hamilton-type (1989) regime-shifting model

for modeling default risk in the economy can also be motivated by the observation that,

economically, one would expect the overall level of default in the economy to be related
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to the business cycle. Finally, Figure 1 provides support for two distinct regimes, where

default probabilities are relatively higher in one regime versus the other.

We estimate a two-regime model for default risk in the economy. Let the average (across

all issuers) default intensity be denoted by λ(t) = 1
N

∑N
i=1 λi(t), which follows a suitable

discretization of an AR(1) continuous-time model, that depends on the prevailing regime,

kt ∈ {1, 2}, at time t (we will suppress the subscript on kt below):

λ(t)− θk = βk[λ(t− 1)− θk] + vkz̃t

Regimes kt =

{
1

2

where z̃t has a standard normal distribution. kt follows a Markov chain with a transition

matrix,

Transition Matrix =

(
q1 1− q1

1− q2 q2

)
where q1 and q2 are the transition probabilities, for time s > t, q1(s, t) = Pr(ks = 1 | kt = 1)

and q2(s, t) = Pr(ks = 2 | kt = 2). Changes from one regime to the other are generated via

the transition matrix. The mean reversion rate, 1− βk, the mean default rate, θk, and the

volatility vk are regime dependent.

The model is estimated, following Hamilton. Consider the transition density,

(7) f [λ(s) | λ(t)] = exp
(
−(λ(s)− λ(t)− (1− βk)(θk − λ(t)) )2

2(vk)2

)
1√

2π(vk)2

for time s > t. We next write the Markov probabilities at time t in logit form as follows:

(8) qj(s, t) =
exp

(
ak + bkrt

)
1 + exp(ak + bkrt)

, kt = 1, 2.

Here, we allow for the possibility that the transition probabilities may vary over time with

the short rate, rt, or be constant, i.e. bk = 0. As we expect regimes, if any, to be correlated

with the business cycle, the short-rate is a natural candidate for determining transition

probabilities. The time-varying ex-ante probabilities for states 1 and 2, [p1(s), p2(s)] are

specified in terms of the ex-post probabilities from the previous period, denoted [p̂1(t), p̂2(t)],

and the Markov chain parameters (q1(s, t), q2(s, t)):

p1(s) = q1p̂1(t) + (1− q2)p̂2(t)

p2(s) = 1− p1(s).

The mixture distribution is then given by:

(9) f [λ(s)] = p1(s).f [λ(s) | λ(t), kt = 1] + p2(s).f [λ(s) | λ(t), kt = 2].
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Updating of the ex-post probabilities follows Bayes’ Theorem:

p̂1(s) =
p1(s).f [λ(s) | λ(t), kt = 1]

f [λ(s)]

p̂2(s) =
p2(s).f [λ(s) | λ(t), kt = 2]

f [λ(s)]
.

Estimates of the parameters are obtained by maximizing the log-likelihood function

(10) {β1, β2, θ1, θ2, v1, v2, a1, a2}∗ = arg max
T∑

t=1

log[f(λt)].

Maximum likelihood estimates for the model are presented in Table 8. Panel A provides

the estimates under the assumption of constant transition probabilities, bk ≡ 0. The mean

level of default in regime 1 (1.77%) is more than twice that of regime 2 (0.74%). The

volatility, vk, is also higher in regime 1 versus regime 2 (0.07% vs. 0.04%). The probability

parameter (ak) results in high values of qk, suggesting strong persistence in each regime.

The probability of remaining in regime 1 is lower (0.8765) than the probability of remaining

in regime 2 (0.9692). Raising the transition matrix to the power of infinity provides the

long-run stable probabilities of each regime, which are roughly 20% in the regime 1 and

80% in regime 2. All estimates are statistically significant. Panel B reports the estimates

where the transition probabilities are allowed to be state-dependent, as a function of the

interest rate. The coefficient, bk, is insignificant, and, therefore, results are similar to those

in Panel A.

The parameter estimates across the two regimes identify regime 1 (2) as a regime with

high (low) mean default rates and volatility. In Figure 5, the probability of being in regime

1 is presented for the time period spanned by the data set. The probabilities track the

patterns originally observed in Figure 1, indicating, in particular, the existence of high/low

default rate regimes. From here onwards, we will identify regime 1 as the “High” regime,

and regime 2 as the “Low” regime, and use the identified regimes to consider differences

between regimes in the default intensities and correlations across rating classes and industry

sectors.

5.2. Regime-Dependent Parameters for Rating Classes. In the previous section, we

determined the two regimes within our sample period in terms of the process for the average

level of default in the economy. Before, we consider how correlations vary across these two

regimes within each rating class, it is instructive to look at how the parameters of the

intensity process vary across these two regimes for the average firm in each class. We

identify a specific time period as being of regime 1 (High) or 2 (Low), if the probability of
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that regime is more than 0.5 (see Figure 5). Of the 166 month period from January 1987

to October 2000, 30 months are identified as being in regime 1.

Using the defined regimes, we estimate the parameters for each rating class in each regime,

again modeling the default intensity as, (although we use i to index either the rating class

or the individual issuer, the context should be clear).

λk
i (t) = λk

i (t− 1) + (1− βk
i )
[
θk
i − λk

i (t− 1)
]

+ vk
i εi(t) k ∈ {1, 2}.(11)

Assuming a standard normal distribution for ε(t), the parameters are estimated by maxi-

mum likelihood,

(12) max
Ω

T∑
t=1

log F [λk
i (t)],

where

(13) F [λk
i (t)] = 11(z)× f [λ1

i (t)] + 12(z)× f [λ2
i (t)],

and f [λk
i ] is the conditional density based on the discrete stochastic process above. 1k, k =

{1, 2} are indicator functions based on the regimes determined in the previous subsection.

The results of this estimation are reported in Tables 9 for the average firm in the class (the

intensity for the average firm is now determined by averaging over all the intensities of all

firms within the class i at t).

Results, reported in Table 9, show clearly that the mean default rate (θ) is different in

the two regimes for every class. Mean default rates increase by 227%, 361% and 202%, for

the high, medium and low grade firms, respectively. Volatilities also increases in the high

regime, and as credit quality declines. Difference in the volatility between the two regimes

differs by credit class, with the lowest credit class showing little difference across regimes.

For each rating class, the rate of mean reversion, 1 − βk
i , is also different across the two

regimes. Although not reported, results are similar for the average firm in each industry

sector - in the high default regime, the mean default rate and volatility are higher than in

the low default regimes (for example, the mean default rate for the average firm in sector 5

increases from 0.68% to 1.47%, and the volatility from 0.05% to 0.08%).

Overall, the regime-dependent parameters for the average firm in each class shows similar

patterns as those identified earlier for the overall default level of the economy. Thus, the

regimes identified as “High” and “Low” in the previous section also provide a reasonable

description for each of the credit classes.5 This provides additional support for the argument

5In principle, we could identify separate regimes for each class. Such regimes would, however, be more

difficult to interpret economically.
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that there is an economy wide factor, likely related to the business cycle, that affects default

probabilities across all firms.

5.3. Differences in correlations across regimes. Having empirically established that

default intensities are time-varying and may be modeled as being regime-dependent, we

now consider whether correlations vary across these two regimes, and if so, how they are

different. Evidence from the previous section that correlations are asymmetric suggest that

correlations are higher in the high default regime. As in the previous section, we divide the

entire time period into the two previously identified regimes, “High” and “Low”, and for

each firm, i, we estimate equation (11).

For each class of firms, we compute the covariance matrix for each of the two regimes, and

test for differences across regimes. We begin with a formal statistical test for differences in

the covariance matrix between each regime (for each of the classes). Let Sk, k = {1, 2} be

the covariance matrix for each regime k. The null hypothesis is that the covariance matrices

are equal across the two regimes, i.e. S1 = S2. To construct the test, define

Ck =
Sk

nk − 1
,

where nk, k = {1, 2}, are the number of observations used to compute each covariance

matrix. We also compute the pooled within covariance matrix as follows:

C =
∑

k(n
k − 1)Ck

n−m
, k = {1, 2}

where n =
∑

k nk, and m = 2 (since we are testing for the equality of only 2 covariance

matrices). The null hypothesis of equality of the covariance matrices is tested using a

modified log-likelihood ratio statistic L,

L = M × h,

M = (n−m) ln |C| −
∑

k

(nk − 1) ln |Ck|,

h = 1− 2p2 + 3p− 1
6(p + 1)(m− 1)

(∑
k

1
nk − 1

− 1
n−m

)
,

where p is the dimension of the covariance matrix, and L is distributed χ2[p(p+1)(m−1)/2].

If L exceeds the critical value, then we reject the hypothesis that the covariance matrices

are equal.

Results are presented in Table 10 on a random sample of 30 firms in each rating category.

The sample is limited to 30 firms as the number of months in the shorter regime - regime

1 - are thirty. We can easily reject the hypothesis that covariance matrices are equal



22 CORRELATED DEFAULT RISK

across the two regimes for all three credit classes. The evidence supports the argument

that correlations are time-varying and regime-dependent, where the regimes are determined

by the average default risk of the economy as a whole. Similar results are obtained for

alternative samples.

Next, we consider how the correlations are different across the two regimes. Using the

covariance matrix estimated for each regime, we compute pair-wise correlations for both

regimes. For tractability, for each rating class, we randomly select 100 issuers (except for

the low grade firms where fewer firms were available with continuous data), and plot each

pairwise correlation (we chose 100 so as to make the picture clearer and less overcrowded).

These plots, one for each regime, are presented in Figures 6-8. The plots are color coded to

highlight the differences in the correlations across regimes. The figure represents a surface

plot of the pairwise correlations across all issuers, resulting in a triangular display. The

upper triangle depicts the correlation structure in the high regime, and the lower triangle

presents the same for the low regime. To make the differences between regimes more easily

discernible, issuers are sorted based on the sum of their correlations with every other issuer.

Thus, dark areas represent firms that have a large correlation with each other, and may be

thought of as “hot spots” in a portfolio context.

A comparison of the upper and lower triangles in the graphs suggests a noticeable differ-

ence between the two regimes. The dark areas are greater for the high default regime, as

compared with the low default regime, across all credit classes. Just as significantly, there

are cross-sectional differences across the rating classes. In particular, high grade firms show

higher correlations in both regimes, as well as a greater increase in correlations from the low

regime to the high regime. These results are consistent with those reported earlier in Table

3 and Table 5, where period III may be interpreted as being in the low default regime.

To verify whether correlations are, indeed, higher in the high default regime, consider

the fraction of variance explained by 1 (2) principal factors in each regime, across each

credit class. The results are reported in Table 11. The results show that the fraction

of the variance explained is much higher in the high default regime as compared to the

low default regime. In the high default regime, the fraction of the variance explained by

the first principal component is about 61%, 55% and 69% for high grade, medium grade

and low grade firms, respectively. In contrast, the fraction explained by the first principal

component is 32%, 34% and 35%, respectively.

In the above analysis, the regime-dependent parameters were estimated for each firm

separately, identifying the residual εi(t). The residuals were then used to estimate the
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correlation structure for reach regime. As an alternative, we could estimate the regime-

shifting model as a multivariate system across two firms at a time, allowing for regime-

dependence correlation. Specifically, we estimate for each issuer i,

(14) λk
i (t)− θk

i = βk
i

[
λk

i (t− 1)− θk
i

]
+ vk

i εk
i (t),

where k ∈ 1, 2, represents the two regimes. For any pair of issuers, i and j, the parameters

can be estimated by maximizing the following log-likelihood function:

(15) max
Ω

T∑
t=1

log F [λk
i (t), λ

k
j (t)],

where

(16) F [λk
i (t), λ

k
j (t)] = 11(z)× f [λ1

i (t), λ
1
j (t)] + 12(z)× f [λ2

i (t), λ
2
j (t)]

and f [λk
i (t), λ

k
j (t)] is the conditional density based on the discrete stochastic process above.

We assume the residuals εk
i (t) and εk

j (t) have a jointly normal distribution conditional on

k. Thus, f [λk
i (t), λ

k
j (t)] is given as follows:

(17) f [λk
i (t), λ

k
j (t)] =

1

2πvk
i vk

j

√
(1− (ρk

ij)2)
exp−q/2

where

(18) q =
1

1− (ρk
ij)2

(x2 − 2ρk
ijxy + y2),

and

x =
λk

i (t)− θk
i − βk

i (λk
i (t− 1)− θk

i )
vk
i

y =
λk

j (t)− θk
j − βk

j (λk
j (t− 1)− θk

j )

vk
j

.

Notice that in the above model, the correlation ρk
ij is regime-dependent.

By also estimating a restricted model where the correlation is assumed to be the same

across both regimes, we can use a standard likelihood ratio test to verify that the estimated

correlation are different across regimes. To estimate both the unrestricted and restricted

models, we choose a random sample of 100 firms across the entire sample. The resultant

sample has 30, 62 and 8 firms of high grade, medium grade and low grade, respectively.

We calculate the values of the log-likelihood function for both the restricted model and

the unrestricted model. The LR-test statistics is defined as two times the difference of the

values of log-likelihood functions from the unrestricted and restricted models, and has an

asymptotic chi-square distribution with 1 degree of freedom.
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The estimated results again verify that the high default regime has higher correlations

than the low default regimes. The median correlation in the high default regime across the

4,950 estimated correlations is 0.17, as compared with a median of 0.08 in the low default

regime. The likelihood ratio test rejects the hypothesis of equal correlation across regimes

at the 95% significance level for 23.58% of the sample. This result provides additional

support for the hypothesis that default correlations are different across regimes, and that,

on average, default intensities tend to be more highly correlated in the high default regime.

In summary, the results of this section provide support for the argument that both

default probabilities and default correlations are regime-dependent, and that correlations

increase in the high default regime. This regime dependence can create time-variation in

default correlations, as well as an asymmetric relation between default probabilities and

correlations, as noted in Section 4.3. In particular, the results in this section indicates that

the time-varying correlations are driven by economy-wide factor, the level of default risk in

the economy. The presence of time-varying correlation indicates that a non-linear model is

required to describe evolution of default risk across firms.

6. Conclusions and Implications

Understanding default risk at the level of the portfolio has implications for the pricing

and management of credit risk for all credit-sensitive instruments. In this paper, we provide

the first look at how default risk is correlated across several thousand US firms, using a

unique default database from Moody’s. Our main results and their implications, can be

summarized as follows:

• Default correlations are, on average, positive, irrespective of whether firms are clas-

sified by average default level, credit rating, or industry. This empirical finding is

more general than the implication from structural models that, for fixed leverage,

default probabilities are positively correlated.

• Our findings indicate that there are cross-sectional differences in how default inten-

sities are correlated across quality grades. On average, default intensities of high

grade firms are the most highly correlated. An examination of the principal compo-

nents of default intensities provides additional support for the hypothesis that there

are structural differences in how common factors affect default across credit classes.

• Default correlations are time-varying in tandem with an economy wide default fac-

tor. We provide evidence that indicates that this time variation may be modeled

in a regime-shifting framework, where the two regimes are characterized as a high
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default and low default regimes. Default correlations and joint default risk is higher

in the high default regime as compared with the low default regime.

What are the pricing implications of our empirical findings? As default intensities directly

affect credit spreads, much of our empirical findings have similar implications for correlation

between credit spreads. Evidence that a systematic, economy-wide default factor may affect

variation in correlation has additional implications for how default risk is priced within the

context of an equilibrium model. Our findings suggest that the risk premium component of

credit spreads may systematically vary such that it increases when default risk increases. If

so, this finding provides a potential explanation for the result of Collin-Dufresne, Goldstein

and Martin (2001) that there is an additional systematic factor in credit spreads that cannot

be explained by factors proxying solely for default loss.

Our findings also have direct implications for the management of credit risk on a portfolio

basis, as well as the pricing of CDOs and other securities, whose cash flows are directly

determined by risk at the portfolio level. How default risk is correlated has implications

for how pools of risky debt are rated, and we provide a framework that may be of use for

developing newer rating methodologies. Our framework and analysis can, for instance, be

applied to the determination of an actuarially fair insurance rate for bank deposits.

Our research provides motivation for resolving other open questions in understanding firm

and economy-wide defaults. In particular, an important assumption in many versions of

reduced form models is that defaults, conditioned on the default intensity, are independent.

The assumption has implications for the determination of joint default risk and future

empirical research will hopefully shed light on its applicability. Although our analysis sheds

light on joint default risk, much remains to be learn of its implications on the evolution of

credit spreads. In particular, given the presence of a systematic factor driving default risk,

it would be of interest to determine the relation between the statistical default intensity

and the risk-neutral intensity, especially in light of the recent results of Jarrow, Lando and

Yu (2001).
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Table 1. Rating and Sector Classifications

Panel A provides the description of each rating class in terms of Moody’s ratings.
Panel B provides the description of each industry sector by broad SIC groups.
Sector 8 corresponds to financial, insurance and real estate and is not represented
in the sample.

Panel A: Rating Classification

Rating Class Moody’s Rating Credit Group

1 Aaa, Aa1, Aa2, Aa3 High Grade

2 A1, A2, A3 High Grade

3 Baa1, Baa2, Baa3 Medium Grade

4 Ba1, Ba2, Ba3 Medium Grade

5 B1, B2, B3 Low Grade

6 Caa1, Caa2, Caa3, Ca, C Low Grade

7 Not rated -

Panel B: Sector Classification
SIC Sector Description

1 Agriculture, Forestry, and Fishing

2 Mining

3 Construction

4 Manufacturing

5 Transportation, Communications, Electric, etc.

6 Wholesale Trade

7 Retail Trade

9 Services

10 Public Administration
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Table 2. Descriptive Statistics of Default Probabilities

The table report the median default probabilities for US non-financial public

firms, sorted by rating and sector. The sample period of January 1987 to October

2000 is divided into 4 sub-periods: 1/87-4/90, 5/90-12/93, 1/94-4/97, 5-97-10/00.

The median default probability for each group is then calculated by averaging

monthly observations of Moody’s default probabilities over each sub-period and

over all firms within that group. Sector and rating groups are as defined in Table

1. Number of firms are shown in brackets.

Group Sub-Period I Sub-Period II Sub-Period III Sub-Period IV
(%) (%) (%) (%)

High Grade 0.09 0.09 0.07 0.23
{213} {223} {210} {215}

Medium Grade 0.75 0.77 0.49 1.17
{344} {337} {403} {535}

Low Grade 4.56 5.01 3.29 5.65
{130} {125} {203} {278}

Not Rated 1.66 1.89 1.63 2.45
{2724} {2517} {3183} {4142}

Sector 1 1.59 1.99 1.21 2.03
{15} {14} {21} {20}

Sector 2 2.04 1.80 1.36 2.78
{245} {215} {243} {276}

Sector 3 2.43 2.39 1.92 2.47
{39} {42} {51} {73}

Sector 4 1.50 1.68 1.38 2.09
{1788} {1687} {2083} {2633}

Sector 5 1.17 1.48 1.35 2.40
{357} {353} {402} {491}

Sector 6 1.75 2.13 1.87 2.87
{179} {169} {204} {270}

Sector 7 1.74 1.98 1.79 2.92
{236} {216} {307} {396}

Sector 9 1.80 2.14 1.99 2.76
{509} {472} {645} {964}

Sector 10 1.99 3.53 3.56 3.83
{43} {34} {43} {47}
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Table 3. Descriptive Statistics of Average Correlations

The table reports the (i) median and (ii) fraction of pairwise correlation, ρij that
are positive for firms belonging to the group. The correlation is defined as the
correlation between ei and ej , from the regression

λi(t) = λ̄i + ei(t),

where λi(t) is the default intensity of firm i in month t. Panel A reports the results
by credit class, and Panel B by SIC industry sector.

Panel A

Group Period I Period II Period III Period IV

Median ρij > 0 Median ρij > 0 Median ρij > 0 Median ρij > 0

High Grade 0.62 0.86 0.18 0.63 0.05 0.54 0.58 0.90

Medium Grade 0.35 0.73 0.20 0.63 0.02 0.52 0.35 0.74

Low Grade 0.17 0.61 0.19 0.61 0.00 0.50 0.29 0.69

Panel B

Group Period I Period II Period III Period IV

Median ρij > 0 Median ρij > 0 Median ρij > 0 Median ρij > 0

Sector 1 0.54 0.67 0.14 0.54 -0.04 0.47 0.40 0.70

Sector 2 0.16 0.61 0.04 0.51 0.00 0.49 0.50 0.70

Sector 3 0.29 0.65 0.25 0.61 0.02 0.49 0.23 0.66

Sector 4 0.29 0.66 0.12 0.57 0.00 0.49 0.21 0.61

Sector 5 0.42 0.73 0.17 0.62 0.01 0.51 0.15 0.64

Sector 6 0.32 0.67 0.14 0.62 0.00 0.49 0.20 0.64

Sector 7 0.40 0.69 0.14 0.60 0.02 0.51 0.13 0.63

Sector 9 0.17 0.58 0.06 0.52 0.00 0.51 0.13 0.55

Sector 10 0.15 0.63 0.04 0.48 0.08 0.51 0.10 0.53



CORRELATED DEFAULT RISK 31

Table 4. Summary of Parameter Estimates for AR(1) Model for
Default Intensity

The table reports the results of the OLS regression,

λi(t) = αi + βiλi(t− 1) + ε̃i(t),

where λi(t) is the default intensity for firm i for month t. The regression is

estimated in each of 4 sub-periods for every firm that has continuous observations

in each sub-period. The table reports the first quartile, median, and third quartiles

for αi and βi across all firms in each credit class. N is the number of firms. Over

99% of the estimates for βi were significant.

100 ∗ αi βi

25% Median 75% 25% Median 75% N

High Grade Period I 0.0021 0.0045 0.0086 0.91 0.94 0.96 213
Period II 0.0022 0.0051 0.0112 0.86 0.91 0.94 223
Period III 0.0029 0.0049 0.0105 0.85 0.90 0.93 210
Period IV 0.0059 0.0125 0.0216 0.89 0.93 0.97 215

Medium Grade Period I 0.0115 0.0233 0.0729 0.87 0.91 0.94 344
Period II 0.0084 0.0184 0.0491 0.86 0.91 0.94 337
Period III 0.0063 0.0154 0.0352 0.85 0.90 0.94 403
Period IV 0.0212 0.0441 0.1170 0.88 0.92 0.96 535

Low Grade Period I 0.0488 0.1489 0.4087 0.84 0.91 0.95 130
Period II 0.0226 0.0930 0.2390 0.88 0.92 0.96 125
Period III 0.0254 0.1034 0.2797 0.87 0.93 0.98 203
Period IV 0.0860 0.2257 0.4680 0.90 0.94 0.98 278
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Table 5. Correlations under Time-Varying Default Probabilities

The table reports the (i) median and (ii) fraction of pairwise correlation, ρij that
are positive for firms belonging to the group. The correlation is defined as the
correlation between ε̃i and ε̃j , from the regression

λi(t) = αi + βiλi(t− 1) + ε̃i(t),

where λi(t) is the default intensity of firm i in month t.

Panel A

Group Period I Period II Period III Period IV

Median ρij > 0 Median ρij > 0 Median ρij > 0 Median ρij > 0

High Grade 0.37 0.89 0.10 0.53 0.01 0.52 0.11 0.70

Medium Grade 0.23 0.82 0.10 0.68 0.02 0.55 0.08 0.67

Lower Grade 0.16 0.80 0.07 0.66 0.02 0.54 0.08 0.68

Panel B

Group Period I Period II Period III Period IV

Median ρij > 0 Median ρij > 0 Median ρij > 0 Median ρij > 0

Sector 1 0.19 0.70 0.06 0.64 0.00 0.50 0.00 0.50

Sector 2 0.09 0.68 0.00 0.51 0.01 0.52 0.10 0.66

Sector 3 0.16 0.80 0.05 0.64 0.02 0.54 0.07 0.65

Sector 4 0.17 0.78 0.05 0.61 0.00 0.50 0.06 0.61

Sector 5 0.13 0.71 0.06 0.63 0.00 0.51 0.05 0.60

Sector 6 0.16 0.77 0.06 0.63 0.00 0.51 0.05 0.60

Sector 7 0.19 0.77 0.07 0.63 0.01 0.50 0.05 0.60

Sector 9 0.11 0.71 0.04 0.59 0.00 0.51 0.04 0.59

Sector 10 0.09 0.69 0.01 0.52 0.00 0.49 0.03 0.58
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Table 6. Principal Components Analysis

For each credit class, the table reports the fraction of the variance of the residual
in equation (5),

λi(t) = αi + βiλi(t− 1) + ε̃i(t),
that is explained by the first one, and two principal components, respectively.

Panel A

Group Sub-Period I Sub-Period II Sub-Period III Sub-Period IV

High Grade 55.01 24.70 15.28 51.07
95.20 36.44 27.08 69.91

Medium Grade 16.34 27.27 16.70 12.04
29.45 41.83 29.92 23.33

Low Grade 22.64 19.67 11.10 15.45
34.98 32.80 19.53 25.45

Panel B

Group Sub-Period I Sub-Period II Sub-Period III Sub-Period IV

Sector 1 77.93 58.11 41.88 32.75
91.49 78.13 63.09 51.73

Sector 3 40.24 33.59 17.51 21.25
64.98 53.41 31.55 40.94

Sector 5 21.46 14.15 12.00 13.45
35.51 27.25 22.06 24.13

Sector 7 18.50 19.09 10.13 11.83
32.10 30.56 19.99 21.08

Sector 9 14.76 15.85 10.39 12.39
22.78 24.11 18.43 21.94
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Table 7. Correlations between principal components

This table presents the correlations between the first principal component of each
rating grade, i.e. high, medium and low grades. We present the correlation matrices
for each subperiod. The principal components are computed from the residuals of
the AR(1) model.

Period Rating Rating

High Medium Low
Period 1 High 1.0000 0.3980 -0.0735

Medium 0.3980 1.0000 -0.7640
Low -0.0735 -0.7640 1.0000

High Medium Low
Period 2 High 1.0000 0.7671 0.5725

Medium 0.7671 1.0000 0.5914
Low 0.5725 0.5914 1.0000

High Medium Low
Period 3 High 1.0000 0.0520 0.1852

Medium 0.0520 1.0000 0.1811
Low 0.1852 0.1811 1.0000

High Medium Low
Period 4 High 1.0000 -0.5736 -0.1475

Medium -0.5736 1.0000 0.5113
Low -0.1475 0.5113 1.0000
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Table 8. Estimation of the Regime Switching model

The table reports estimates from a two-regime model for default probabilities. Panel
A is for the case of a constant transition matrix, and Panel B for the case where
transition probabilities vary with the short rates.

Panel A: Constant Transition Probabilities

Parameters Estimates t-statistics

β1 0.78 17.37
β2 0.92 57.48
θ1 1.77% 18.43
θ2 0.74% 15.61
v1 0.07% 6.57
v2 0.04% 15.28
a1 1.96 3.39
a2 3.45 6.59

Panel B: Time-varying Transition Probabilities

Parameters Estimates t-statistics

β1 0.78 17.21
β2 0.92 51.94
θ1 1.76% 17.03
θ2 0.74% 16.33
η1 0.07% 7.61
η2 0.04% 15.47
a1 3.46 0.87
a2 5.14 2.56
b1 -0.26 -0.39
b2 -0.29 -0.91
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Table 9. Regime Dependent Parameters within each Rating Category

For each rating category, i, the table reports the maximum likelihood estimates of
the model,

λk
i (t) = λk

i (t− 1) + (1− βk
i )[θk

i − λk
i (t− 1)] + vk

i εi(t), k ∈ {1, 2}.
across two regimes. The regimes are based on the estimation in Panel A of Table
8. The t-statistics are reported in parenthesis.

Rating Parameters
Class β1

i β2
i θ1

i θ2
i v1

i v2
i

(%) (%) (%) (%)

High 0.97 0.99 0.25 0.11 0.03 0.01
(82.00) (49.32) (5.67) (3.77) (7.18) (14.80)

Medium 0.86 0.98 1.48 0.41 0.09 0.05
(18.64) (49.37) (9.00) (2.54) (9.37) (17.34)

Low 0.85 0.96 4.81 2.38 0.12 0.12
(8.92) (7.77) (8.93) (7.77) (8.21) (16.07)
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Table 10. Statistical differences in covariance matrices

This table presents the chi-square statistics for the differences in covariance matrices
in the high and low default regimes. The test was performed on a randomly chosen
group of 30 firms from each rating class.

Rating Class Test-Statistics Degrees of Freedom p-value

High Grade 985.69 465 0.0000

Medium Grade 657.65 465 0.0000

Low Grade 904.75 465 0.0000
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Table 11. Principal Component Analysis Across Regimes

Across each regime and for each credit class, the table reports the fraction of the
variance in εi from equation (11), explained by the first one, and the first two
principal components, respectively.

Rating Class Low Default Regime High Default Regime

High Grade 32.02 61.37
68.07 78.86

Medium Grade 33.87 55.22
61.08 78.85

Low Grade 45.27 69.66
64.37 85.48
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Table 12. Defaults Conditional on PDs

Linear regression - Dependent variable: NUMDEF

Ind. Var Coefficient T-Statistic

Intercept (β0) -6.5613 -3.67

AV GEDF (β1) 667.3942 5.94

REGIME (β2) 1.8603 2.04

R2 = 0.4532 F-stat (pval) = 0.0000

AR(1) Model - Dependent variable: NUMDEF

Ind. Var Coefficient T-Statistic

Intercept (β0) -6.9003 -3.17

AV GEDF (β1) 693.0343 5.15

REGIME (β2) 1.4011 1.42

ρ 0.2757 3.61

R2 = 0.4912 Durbin-Watson = 2.08
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Figure 1. Historical PDs

We plot average Moody’s default probabilities across the issuers in the sample on
a monthly basis. The data reflects periods of high default intensity and periods of
low intensity.
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Figure 2. Relationship of Actual Default to Lagged PDs

We scatter plot actual defaults against the average Moody’s default probabilities
across the issuers in the sample on a monthly basis. The data reflects the strong
positive relationship between defaults and default intensity. We plot the regression
line as well to demonstrate the positive relationship.
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Figure 3. Principal Components in Residuals

This figure graphs the fraction of the variance of εi(t) of equation 5 that is explained
by up to the first 10 principal components. Each panel, comprising 3 plots represents
one of four sub-periods, and shows the results across each of three credit classes,
High Grade, Medium Grade and Low Grade. The upper left panel is for period I,
the upper right for period II, bottom left for period III and finally, the bottom right
panel is for period IV.
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Figure 4. Asymmetric Correlation

This figure graphs the exceedance correlations for the different rating classes in our
study. The high, medium and low rating classes are as defined in Table 1.
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Figure 5. Time series of regime probabilities

This figure presents the time series plot of probability of being in the high default
intensity regime. The probability of being in the low intensity regime is one minus
the high intensity probabilities, since there are only two regimes in the estimated
model. The upper panel presents the results when the transition probabilities are
assumed to be fixed. The lower panel shows probabilities when the transition matrix
varies with the state vector z. The state vector comprises the short-term interest
rate r.
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Figure 6. Correlation plots for differences in regimes

This figure presents correlation plots for high rated firms for a random selection
of 100 issuers in each class. The upper triangle depicts the correlations in the
high default regime, and the lower triangle shows the correlations in the low de-
fault regime. A comparison of upper and lower triangles reflects differences in the
correlation structure across the two regimes.
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Figure 7. Correlation plots for differences in regimes

This figure presents correlation plots for medium rated firms for a random selec-
tion of 100 issuers in each class. The upper triangle depicts the correlations in the
high default regime, and the lower triangle shows the correlations in the low de-
fault regime. A comparison of upper and lower triangles reflects differences in the
correlation structure across the two regimes.
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Figure 8. Correlation plots for differences in regimes

This figure presents correlation plots for low rated firms for a random selection of 100
issuers in each class. The upper triangle depicts the correlations in the high default
regime, and the lower triangle shows the correlations in the low default regime.
A comparison of upper and lower triangles reflects differences in the correlation
structure across the two regimes.
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