
Multi-Period Corporate Failure Prediction

With Stochastic Covariates∗

Darrell Duffie† Ke Wang‡

First Version: August 30, 2003
Current Version: December 3, 2003

Abstract

We provide maximum likelihood estimators of term structures of
conditional probabilities of bankruptcy over relatively long time hori-
zons, incorporating the dynamics of firm-specific and macroeconomic
covariates. We find evidence in the U.S. industrial machinery and
instruments sector, based on over 28,000 firm-quarters of data span-
ning 1971 to 2001, of significant dependence of the level and shape of
the term structure of conditional future bankruptcy probabilities on
a firm’s distance to default (a volatility-adjusted measure of leverage)
and on U.S. personal income growth, among other covariates. Varia-
tion in a firm’s distance to default has a greater relative effect on the
term structure of future failure hazard rates than does a comparatively
sized change in U.S. personal income growth, especially at dates more
than a year into the future.
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1 Introduction

We provide maximum likelihood estimators of term structures of conditional
corporate bankruptcy probabilities. Our contribution over prior work is to
exploit the dependence of failure intensities on stochastic covariates, as well
as the time-series dynamics of the covariates, in order to estimate the likeli-
hood of failure over several future periods (quarters or years). We estimate
our model for the U.S. industrial machinery and instrument sector, using
over 28,000 firm-quarters of data for the period 1971 to 2001. We find evi-
dence of significant dependence of the level and shape of the term structure
of conditional future failure probabilities on a firm’s distance to default (a
volatility-adjusted measure of leverage) and on U.S. personal income growth,
among other covariates. Variation in a firm’s distance to default has a greater
relative effect on the term structure of future failure hazard rates than does
a comparatively sized change in the business-cycle covariate, U.S. personal
income growth, especially at dates more than one year into the future.

The estimated shape of the term structure of conditional failure probabili-
ties reflects the time-series behavior of the covariates, namely leverage target-
ing by firms and mean reversion in macro-economic performance. The term
structures of failure hazard rates are typically upward sloping at business-
cycle peaks, and downward sloping at business-cycle troughs, to a degree
that depends on corporate leverage relative to its long-run target.

In our model, a firm’s stochastic failure intensity is assumed to depend on
both firm-specific and macroeconomic state variables. Stochastic evolution
of the combined Markov state vector Xt causes variation over time in a firm’s
failure intensity λt = Λ(Xt). The firm exits for other reasons, such as merger,
acquisition, privatization, or liquidation out of bankruptcy, with an intensity
αt = A(Xt). The total exit intensity is αt + λt.

We specify a doubly-stochastic formulation of the point process for failure
and other forms of exit under which the conditional probability at time t of
corporate survival (from failure or other exit) for s years is

p(Xt, s) = E

(

e−
R

t+s
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and under which the conditional probability of failure within s years is
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This calculation of q(Xt, s), demonstrated in Section 2, reflects the fact that,
in order to fail at time z, the firm must survive until time z, avoiding both
failure and other forms of exit, which arrive at a total intensity of λ(u)+α(u).

While, as explained in Section 1.1, there is a significant prior literature
treating the estimation of one-period-ahead bankruptcy probabilities, for ex-
ample with duration models, we believe this is the first empirical study of the
conditional term structure of failure probabilities over multiple future time
periods. The sole exception seems to be the practice of certain banks and
dealers in structured credit products of treating the credit rating of a firm
as though a Markov chain, with ratings transition probabilities estimated as
long-term average ratings transition frequencies.1 It is by now well under-
stood, however, that the current rating of a firm does not incorporate much
of the influence of the business cycle on failure rates (Nickell, Perraudin,
and Varotto (2000), Kavvathas (2001)), nor even the effect of prior ratings
history (Behar and Nagpal (1999), Lando and Skødeberg (2002)). There is,
moreover, significant heterogeneity in the short-term failure probabilties of
different firms of the same current rating (Kealhofer (2003)).

We anticipate several types of applications for our work, including (i) the
analysis by a bank of the credit quality of a borrower over various future
potential borrowing periods, for purposes of loan approval and pricing, (ii)
the determination by banks and bank regulators of the appropriate level of
capital to be held by banks, in light of the current state of their loan portfolio,
especially given the upcoming Basel II accord, under which borrower default
probabilities are to be introduced for the purpose of determining the capital
to be held as backing for a loan to a given borrower, (iii) the determination of
credit ratings by rating agencies, and (iv) the ability to shed some light on the
macroeconomic links between business-cycle variables and the failure risks of
corporations. Absent a model that incorporates the dynamics the underlying
covariates, it seems difficult to extrapolate prior models of one-quarter-ahead
or one-year-ahead default probabilities to longer time horizons. While one
could seperately estimate models of fixed-horizon failure probabilities for each
of various alternative time horizons, it seems natural and statistically more
efficient to incorporate joint consistency conditions for failure probabilities
at various time horizons within one model.

The conditional survival and default probabilities, p(Xt, s) and q(Xt, s),
depend on:

1See, for example, Duffie and Singleton (2003), Chapter 4.
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• a parameter vector β determining the dependence of the failure and
other-exit intensities, Λ(Xt) and A(Xt), respectively, on the covariate
vector Xt, and

• a parameter vector γ determining the time-series behavior of the un-
derlying state vector Xt of covariates.

The doubly-stochastic assumption, stated more precisely in Section 2, is
that, conditional on the paths of the underlying state variables determining
failure and other-exit intensities for all firms, these exit times are the first
event times of independent Poisson processes with the same (conditionally
deterministic) intensity paths.2 In particular, this means that, given the path
of the state-vector process, the merger and default times of different firms
are conditionally independent.

A major advantage of the doubly-stochastic formulation is that it allows
decoupled maximum-likelihood estimations of β and γ, which can then be
combined to obtain the maximum-likelihood estimators of the survival and
failure probabilities, p(Xt, s) and q(Xt, s), and other properties of the model,
such as probabilities of joint failure of more than one firm. The maximum
likelihood estimator of the intensity parameter vector β is the same as that of
a conventional competing-risks duration model with time-varying covariates,
because of the doubly-stochastic assumption. The maximum likelihood esti-
mator of the time-series parameter vector γ would depend of course on the
particular specification adopted for the time-series behavior of the state pro-
cess X. Our approach is quite flexible in that regard. For examples, we could
allow the state process X to have GARCH volatility behavior, to depend on
hidden Markov chain “regimes,” or to have jump-diffusive behavior. For our
specific empirical application to the U.S. macinery and instrument sector,
we have adopted a simple Gaussian vector auto-regressive specification for
the firm-specific leverage variables and the macroeconomic growth variables,
and we use the conventional maximum-likelihood estimator for the associ-
ated parameter vector γ. A further advantage of this methodology is that it
allows straightforward maximum-likelihood estimation of the term structure
of failure probabilities, by simply substituting the maximum-likelihood esti-
mators for β and γ into (2). Asymptotic confidence intervals for the term

2One must take care in interpreting this characterization when treating the “internal
covariates,” those that are firm-specific and therefore no longer available after exit, as
explained in Section 2.
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structure of future default probabilities can then be obtained by the usual
“Delta” method, as explained in the appendix.

The doubly-stochastic assumption is overly restrictive in settings for which
failure, or another form of exit by one firm, could have an important direct
influence on the failure or other-exit intensity of another firm. This influence
would be anticipated to some degree if one firm plays a relatively large role in
the marketplace of another. Our empirical results should therefore be treated
with caution, although we hope that, because they address for the first time
the impact of stochastic covariates on multi-period failure probabilities, these
results may nevertheless be useful.

In our study of the U.S. industrial machinery and instrument sector be-
tween 1971 and 2001, we find that corporate failure probabilities depend
significantly on both firm leverage and business-cycle covariates. We use
a volatility-corrected measure of leverage, distance to default, that has be-
come a standard default covariate in industry practice (Kealhofer 2003). We
illustrate the degree of dependence of long-horizon failure probabilities on
the time-series behavior of the covariates, principally through the effects of
mean reversion, long-run means, and volatilities of distances to default and
of national income growth.

Our methods also lead to a calculation at time t of the conditional prob-
ability P ({T ∈ [t, u]}∪{q(Xu, s) > q} |Xt) that the failure time T of a given
firm is before some given future time u, or that the firm’s s-year failure prob-
ability at time u will exceed a given level q. This and related calculations
could play a role in credit rating, risk management, and regulatory applica-
tions. The estimated model can be further used to calculate probabilities of
joint failure of groups of firms, or other properties related to failure corre-
lation. In our doubly-stochastic model setting, failure correlation between
firms arises from correlation in their failure intensities due to (i) common
dependence of these intensities on macro-variables and (ii) correlation across
firms in leverage.

Our econometric methodology may be useful in other subject areas re-
quiring estimators of multi-period survival probabilities under exit intensities
that depend on covariates with pronounced time-series dynamics. Examples
might include the timing of real options such as technology switch, mortgage
prepayment, securities issurance, and labor mobility. We are unaware of pre-
viously available econometric methodology for multi-period event prediction
under stochastic covariates. That is, there has been extensive research on
multi-period event prediction (for example, baseline-hazard duration mod-
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els), and there is a separate literature on stochastic event intensity estima-
tion, but we are aware of no prior work that estimates multi-period event
probabilities under intensities depending on stochastic covariates.

1.1 Related Literature

A standard structural model of bankruptcy timing assumes that a corpora-
tion fails when its assets drop to a sufficiently low level relative to its lia-
bilities. For example, the proto-typical models of Black and Scholes (1973),
Merton (1974), Fisher, Heinkel, and Zechner (1989), and Leland (1994), take
the asset process to be a geometric Brownian motion. In these models, a
sufficient statistic for conditional failure probabilities is the distance to de-
fault, which is the number of standard deviations of annual asset growth
by which the current asset level exceeds the firm’s liabilities. This failure
covariate, using market equity data and accounting data for liabilities, has
been adopted in industry practice by Moody’s KMV, a leading provider of
estimates of failure probabilties for essentially all publicly traded firms. (See
Crosbie and Bohn (2002) and Kealhofer (2003).) Based on this theoretical
foundation, it seems natural to include distance to default as a covariate.

In the context of a standard structural default model of this type, Duffie
and Lando (2001) show that if the distance to default cannot be accurately
measured, then a filtering problem arises, and the failure intensity depends
on the measured distance to default and also on other covariates that may
reveal additional information about the firm’s conditional failure probability.

More generally, a firm’s financial health may have multiple influences
over time. For example, firm-specific, sector-wide, and macroeconomic state
variables may all influence the evolution of corporate earnings and leverage.
Given the usual benefits of parsimony, the preliminary model of long-horizon
failure probabilities analyzed in this paper adopts two failure covariates, only,
distance to default and U.S. personal income growth. (Other macroeconomic
performance measures might serve approximately as well.) Given distance to
default, the choice of a second covariate calls for a tradeoff between variables
that are more directly tied to the firm’s marketplace (such as sector perfor-
mance measures), and variables that capture information that is not largely
explained by distance to default.

Prior empirical models of corporate failure probabilities, reviewed by
Jones (1987) and (Hillegeist et al. 2003), have relied on many types of covari-
ates, both fixed and time-varying. Prior work has not, however, attempted
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to estimate failure probabilities over multiple time periods that exploits the
time-series behavior of the covariates.

The first generation of empirical corporate failure analysis, originating
with Altman (1968), was based on multivariate discriminant analysis. Among
the covariates used in Altman’s ‘Z-score’ is a measure of leverage, defined
as the market value of equity divided by the book value of total debt. Our
distance to default covariate is essentially a volatility-corrected measure of
leverage.

A second generation of empirical work is based on qualitative-response
models, such as logit and probit. Among these, Ohlson (1980) used an “O-
score” method in his year-ahead failure prediction model.

The latest generation of modeling is dominated by duration analysis.
Early in this literature is the work of Lane, Looney, and Wansley (1986) on
bank failure prediction, using time-independent covariates.3 These models
typically apply a Cox proportional-hazard model. Lee and Urrutia (1996)
used a duration model based on a Weibull distribution of failure time. They
compare duration and logit models in forecasting insurer insolvency, finding
that, for their data, a duration model identifies more significant variables
than does the logit model.

Duration models based on time-varying covariates include those of Mc-
Donald and Van de Gucht (1999), in a model of high-yield bond failure
and call risk estimation, taking as time-varying covariates the bond’s age
and treating certain macroeconomic variables as time-varying covariates.4

Related duration analysis by Shumway (2001), Kavvathas (2001), and Hil-
legeist, Keating, Cram, and Lundstedt (2003) predicts bankruptcy.5

Shumway (2001) uses a multi-period logit model with an adjusted-standard-
error structure. Computationally, this is equivalent to a discrete duration
model with time-dependent covariates. In predicting one-year failure, Hil-
legeist, Keating, Cram, and Lundstedt (2003) also exploit a discrete dura-
tion model. By taking as a covariate the theoretical probability of failure
implied by the Black-Scholes-Merton’s model, based on distance to default,
Hillegeist, Keating, Cram, and Lundstedt (2003) find, at least in this model
setting, that distance to default is not a sufficient statistic for predicting fail-
ure. Accounting-based and macroeconomic variables are also relevant. Our

3Whalen (1991) and Wheelock and Wilson (2000) also used Cox proportional-hazard
models for bank failure analysis.

4Meyer (1990) used a similar approach in a study of unemployment duration.
5Kavvathas (2001) also analyzes the transition of credit ratings.
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results confirm this conclusion for our data, and extend the analysis to mul-
tiple periods. Further discussion of the selection of covariates for corporate
failure prediction may be found in Section 3.2.

Moving from the empirical literature on corporate failure prediction to
the statistical methods available for this task, typical econometric treatments
of stochastic intensity models include Lancaster (1990) and Kalbfleisch and
Prentice (2002), which provide likelihood functions in settings similar to
ours.6 In their language, our macro-covariates are “external,” and our firm-
specific covariates are “internal,” that is, cease to be generated once a firm
has failed. These sources do not treat large-sample properties, nor indeed
do such properties appear to have been developed in a form suitable for our
application. For example, Berman and Frydman (1999) do provide asymp-
totic properties for maximum-likelihood estimators of stochastic intensity
models, including a version of Cramèr’s Theorem, but treat only cases in
which the covariate vector Xt is fully external (with known transition dis-
tribution), and in which event arrivals continue to occur, repeatedly, at the
specified parameter-dependent arrival intensity. This clearly does not treat
our setting, for a firm typically disappears once it fails.7

2 Econometric Model

This section outlines our probabilistic model for corporate survival, and the
estimators that we propose. The following section applies the estimator to
data on the U.S. industrial machinery and instrument sector.

2.1 Conditional Survival and Failure Probabilities

Fixing a probability space (Ω,F , P ) and an information filtration {Gt : t ≥ 0}
satisfying the usual conditions,8 let X = {Xt : t ≥ 0} be a time-homogeneous

6For other textbook treatments, see Andersen, Borgan, Gill, and Keiding (1992), Miller
(1981), Cox and Isham (1980), Cox and Oakes (1984), Daley and Vere-Jones (1988), and
Therneau and Grambsch (2000).

7For the same reason, the autoregressive conditional duration framework of Engle and
Russell (1998) and Engle and Russell (2002) is not suitable for our setting, for the updating
of the conditional probability of an arrival in the next time period depends on whether
an arrival occured during the previous period, which again does not treat a firm that
disappears once it fails.

8See Protter (1990) for technical definitions.
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Markov process in R
d, for some integer d ≥ 1. The state vector Xt is

a covariate for a given firm’s exit intensities, in the following sense. Let
(M,N) be a doubly-stochastic non-explosive two-dimensional counting pro-
cess driven by X, with intensities α = {αt = A(Xt) : t ∈ [0,∞)} for M and
λ = {λt = Λ(Xt) : t ≥ 0} for N , for some non-negative real-valued measur-
able functions A( · ) and Λ( · ) on R

d. Among other implications, this means
that, conditional on the path of X, the counting processes M and N are
independent Poisson processes with conditionally deterministic time-varying
intensities, α and λ, respectively. For details on these definitions, one may
refer to Karr (1991) and Appendix I of Duffie (2001).

We suppose that a given firm exits (and ceases to be observable) at τ =
inf{t : Mt + Nt > 0}, which is the earlier of the first event time of N ,
corresponding to failure, and the first event time of M , corresponding to exit
for some other reason. In our application to the U.S. industrial machinery
and instrument sector, the portion of exits for reasons other than failure is
far too substantial to be ignored.

The main idea is that, so long as the firm has not exited for some reason,
its failure intensity is Λ(Xt) and its intensity of exit for other reasons is
A(Xt).

It is important to allow the state vector Xt to include firm-specific failure
covariates that cease to be observable when the firm exits at τ . For simplicity,
we suppose that Xt = (Ut, Yt), where Ut is firm-specific and Yt is macroe-
conomic. Thus, we consider conditioning by an observer whose information
is given by the smaller filtration {Ft : t ≥ 0}, where Ft is the σ-algebra
generated by

{(Us,Ms, Ns) : s ≤ min(t, τ)} ∪ {Ys : s ≤ t}.
We now verify that the observer’s time-t conditional probabilities p(Xt, s)

and q(Xt, s) of survival for s years, and of failure within s years, respectively,
are as shown in (1) and (2). The firm’s failure time is T = inf{u > t : Nu >
Nt,Mu = Mt}.

Proposition 1. On the event {τ > t} of survival to t, the Ft-conditional
probability of survival to time t+ s is

P (τ > t+ s | Ft) = p(Xt, s),

where p(Xt, s) is given by (1), and the Ft-conditional probability of failure by
t+ s is

P (T < t+ s | Ft) = q(Xt, s),
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where q(Xt, s) is given by (2).

Proof: We begin by conditioning instead on the larger information set Gt,
and later show that this does not affect the result.

We first calculate that, on the event {τ > t},
P (τ > t+ s | Gt) = p(Xt, s), (3)

and

P (T < t+ s | Gt) = q(Xt, s). (4)

The first calculation (3) is standard, using the fact that M +N is a doubly-
stochastic counting process with intensity α+ λ. For the second calculation
(4), we use the fact that, conditional on the path of X, the (improper)
density, evaluated at any time z > t, of the failure time T , exploiting the
X-conditional independence of M and N is, with the standard abuse of
notation,

P (T ∈ dz |X) = P (inf{u : Nu 6= Nt} ∈ dz,Mz = Mt |X) (5)

= P (inf{u : Nu 6= Nt} ∈ dz |X)P (Mz = Mt |X) (6)

= e−
R

z

t
λ(u) duλ(z) dz e−

R

z

t
α(u) du (7)

= e−
R

z

t
(α(u)+λ(u)) duλz dz. (8)

From the doubly-stochastic property, conditioning also on Gt has no effect
on this calculation, so

P (T ∈ [t, t+ s] | Gt, X) =

∫ t+s

t

e−
R

z

t
(α(u)+λ(u)) duλz dz. (9)

Now, taking the expectation of this conditional probability given Gt only,
using the law of iterated expectations, leaves (4).

On the event {τ > t}, the conditioning information in Ft and Gt coincide.
That is, every event contained by {τ > t} that is in Gt is also in Ft. The
result follows.

One can calculates p(Xt, s) and q(Xt, s) explicitly in certain settings, for
example if the state vector X is affine and the exit intensities have affine
dependence on X, as shown in various cases by Duffie, Pan, and Singleton
(2000), Duffie, Filipović, and Schachermayer (2003). In our eventual appli-
cation, however, in order to simplify the maximum-likelihood problem, our
specification of the dependence of the intensities on Xt is non-linear, which
calls for numerical solutions of p(Xt, s) and q(Xt, s), as we shall see in Section
3.
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2.2 Maximum Likelihood Estimator

We turn to the problem of inference from data.
For each of n firms, we let Ti = inf{t : Nit > 0,Mit = 0} denote the failure

time of firm i, and let Si = inf{t : Mit > 0, Nit = 0} denote the censoring
time for firm i due to other forms of exit, subscripting by i in the obvious way.
We let Uit be the firm-specific vector of variables that are observable for firm
i until its exit time τi = min(Si, Ti), and let Yt denote the vector of environ-
mental variables (such as business-cycle variables) that are observable at all
times. We let Xit = (Uit, Yt), and assume, for each i, that Xi = {Xit : t ≥ 0}
is a Markov process.(This means that, given Yt, the transition probabilities
of Uit do not depend on Ujt for j 6= i, a simplifying assumption.) Because,
in our current implementation of the model, we observe these covariates Xit

only quarterly, we take Xit = Xi,k(t) = Zik, where k(t) denotes the last (in-
teger) discrete time period before t, and where Zi is the time-homogeneous
discrete-time Markov process of covariates for firm i. This means that Xi is
constant between periodic observations, a form of time-inhomogeneity that
involves only a slight extension of our basic theory of the Section 2.1. We
continue to measure time continuously, however, because we wish to allow
the use of information associated with the intra-period timing of exits.

Extending our notation from Section 2.1, for all i, we let Λ(Xit, β) and
A(Xit, β) denote the failure and other-exit intensities of firm i, where β is a
parameter vector, common to all firms, to be estimated. This homogeneity
across firms allows us to exploit both time-series and cross-sectional data,
and is traditional in duration models of failure such as Shumway (2001).
This leads to inaccurate estimators to the degree that the underlying firms
are actually heterogeneous in this regard. We do, however, allow for hetero-
geneity across firms with respect to the probability transition distributions
of the Markov covariate processes Z1, . . . , Zn of the n firms. For example,
some firms may have different target leverage ratios than others.

We assume that the exit-counting process (M1, N1, . . . ,Mn, Nn) is doubly-
stochastic driven byX = (X1, . . . , Xn), in the sense of Section 2.1, so that the
exit times τ1, . . . , τn of the n firms are X-conditionally independent. There
is some important loss of generality here, for this implies that the exit of
one firm has no direct impact on the failure intensity of another firm. Their
failure times are correlated only insofar as their intensities are correlated.
Similarly, an exit by one firm due to a merger or acquisition has no direct
impact on the failure intensity of another firm, and so on.
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The econometrician’s information set Ft at time t is that generated by

It = {Ys : s ≤ t} ∪ J1t ∪ J2t · · · ∪ Jnt,
where the information set for firm i is

Jit = {(1Si<s, 1Ti<s, Uis) : t0i ≤ s ≤ min(Si, Ti, t)},
and where t0i is the time of first appearance of firm i in the data set. For
simplicity, we take t0i to be at the end of a discrete time period and deter-
ministic, but our results would extend to treat left-censoring of each firm
at a stopping time, under suitable conditional independence assumptions. It
would be enough, for example, that the left-censoring times are (Ft)-stopping
times, which leaves our likelihood functions unaffected.

In order to simplify the estimation of the time-series model of covariates,
we suppose that the environmental discrete-time covariate process {Y1, Y2, . . .}
is itself a time-homogeneous (discrete-time) Markov process.

Conditional on Zk = (Z1k, . . . , Znk), we suppose that Zk+1 has some joint
density f( · |Zk; γ), for some parameter vector γ to be estimated. Despite
our prior Markov assumption on the covariate process {Zik : k ≥ 1} for
each firm i, this allows for conditional correlation between Ui,k+1 and Uj,k+1

given (Yk, Uik, Ujk). We emphasize that this transition density f( · ) is not
conditioned on survivorship.

As a notational convenience, whenever K ⊂ L ⊂ {1, . . . , n} we let
fKL( · | Yk, {Uik : i ∈ L}; γ) denote the joint density of (Yk+1, {Ui,k+1 : i ∈
K}) given Yk and {Uik : i ∈ L}, which is a property of (in effect, a marginal
of) f( · |Zk; γ). In our eventual application, we will further assume that
f( · | z; γ) is a joint-normal density, which makes the marginal density func-
tion fKL( · | y, {ui : i ∈ L}) an easily-calculated joint normal.

For additional convenient notation, let R(k) = {i : τi > k} denote the
set of firms that survive to at least period k, let Ũk = {Uik : i ∈ R(k)},
Si(t) = min(t, Si), S(t) = (S1(t), . . . , Sn(t)), and likewise define Ti(t) and
T (t). Under our doubly-stochastic assumption, the likelihood for the infor-
mation set It is

L(It; γ, β) = L(Ũ , Y ; γ) × L(S(t), T (t);Y, Ũ, β), (10)

where

L(Ũ , Y ; γ) =

k(t)
∏

k=0

fR(k+1),R(k)(Yk+1, Ũk+1 | Yk, Ũk; γ), (11)
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and

L(S(t), T (t);Y, Ũ ; β) =
n
∏

i=1

Git(β), (12)

for

Git(β) = exp

(

−
∫ Hi

t0
i

(A(Zi,k(s); β) + Λ(Zi,k(s); β)) ds

)

×
(

1Hi= t + A(Zi,Si
; β)1Si(t)<t + Λ(Zi,Ti

; β)1Ti(t)<t

)

,

where Hi = min(Si(t), Ti(t)) = min(τi, t).
Because of this structure for the likelihood, we can decompose the overall

maximum likelihood estimation problem into the separate problems

sup
γ

L(Ũ , Y ; γ) (13)

and

sup
β

L(S, T ;Y, Ũ, β). (14)

Further simplification is obtained by taking the parameter vector β de-
termining intensity dependence on covariates to be of the decoupled form
β = (µ, ν), with

λit = Λ(Xit;µ); αit = A(Xit; ν). (15)

(This involves a slight abuse of notation.) This means that the form of de-
pendence of the failure intensity on the covariate vector Xit does not restrict
the form of the dependence of the other-exit intensity, and vice versa. An
examination of the structure of (14) reveals that this decoupling assumption
allows problem (14) to be further decomposed into the pair of problems

sup
µ

n
∏

i=1

e
−

R Hi

t0
i

Λ(Xi(u);µ) du (
1Hi = t + Λ(Xi(Ti);µ)1Ti(t)<t

)

(16)

and

sup
ν

n
∏

i=1

e
−

R Hi

t0
i

A(Xi(u);ν) du (
1Hi = t + A(Xi(Si); ν)1Si(t)<t

)

. (17)
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We have the following result, which summarizes our parameter-fitting algo-
rithm.

Proposition 2. Solutions γ∗ and β∗ of the respective maximum-likelihood
problems (13) and (14) collectively form a solution to the overall maximum-
likelihood problem

sup
γ,β

L(It; γ, β). (18)

Under the parameter-decoupling assumption (15), solutions µ∗ and ν∗ to the
maximum-likelihood problems (16) and (17), respectively, form a solution
β∗ = (µ∗, ν∗) to problem (14).

In our particular empirical application, as explained in Section 3, each of
these optimization problems is solved numerically. The decomposition of
the MLE optimization problem given by Proposition 2 allows the individual
numerical searches for γ∗, µ∗, and ν∗ to be done in relatively low-dimensional
respective parameter spaces. (We have not specified the dimensions explicitly
here, leaving special cases to be specified in Section 3.)

Under the usual technical regularity conditions, given a maximum-likelihood
estimator (MLE) θ̂ for some parameter θ, the maximium-likelihood estimator
(MLE) of h(θ), for some smooth function h( · ), is h(θ̂). Thus, under these
technical conditions, the MLE for the survival probability q(Xt, s) and the
failure probability p(Xt, s) are obtained by (1) and (2), using the maximum
likelihood estimators for β = (µ, ν) and γ to determine the distributions
underlying these expectations.

Under further technical conditions, an MLE is consistent, efficient, and
asymptically normal, in the sense that the difference between the maximum-
likelihood estimator and the “true” data-generating parameter, scaled by the
square root of the number of observations, converges weakly to a vector whose
distribution is joint normal with mean zero and with a well-known covariance
matrix (Amemiya 1985). In our case, it is apparant that a consistency result
will require allowing both the number n of firms and the number k(t) of
periods of data to become large in this sense. In Section 3, we will compare
asymptotic standard errors with standard errors based on a typical bootstrap
simulation procedure (Efron and Tibshirani 1993).
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3 Empirical Analysis

The section describes our data set, specific parameterizations of our covari-
ate processes and intensity models, our parameter estimates, some of their
properties, and some of the substantive conclusions regarding the behavior
of conditional term structures of failure hazard rates. We are particularly
interested in the sensitivity of these term structures of failure hazard rates
to firm-specific and macroeconomic variables.

3.1 Data

We use three main data sources. Quarterly balance sheets and income state-
ments for each firm in our sector are from the Compustat database. Stock
price and market capitalization data are from the Center of Research in
Security Prices (CRSP). Both of these databases are available online from
Wharton Research Data Services. The third source is the National Economic
Accounts of The Bureau of Economic Analysis, from which we get quarterly
business-cycle variables.

Our target set of firms consists of those publicly-traded companies that
are recorded in the Compustat industrial database as a member of the in-
dustrial machinery and instrument sector (2-digit SIC code 35). This sector
is chosen mainly for the fact that it has the largest number of bankruptcies
recorded in the Compustat database during our sample period, 1971 to 2001.
Also, failures in this sector are not concentrated within a short time period,
as is the case, for examples, in the banking and oil-and-gas sectors. A con-
centration of bankuptcies within a short time period would limit our ability
to identify dependence of failure intensities on macroeconomic variables.

Specifically, we include all firms of this sector for which the data necessary
to construct our covariates are available from Compustat and CRSP, with
exceptions to be noted. In all, 870 such firms existed during our sample
period, of which 332 remain “active” as public firms as of the end of our
sample period, the end of 2001.

Of the remaining 538 firms, 70 failed, filing for bankruptcy under Chapter
11 or Chapter 7 of the U.S. Bankruptcy Code. Coverage by Computstat of
the remaining 468 firms was discontinued for other reasons, such as merger,
acquisition, leveraged buyout, privatization, or ceasing to provide data.9 Ex-

9The alternative forms of exit can be determined from Compustat item AFTNT35.
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its are recorded by month in the Compustat annual file (item AFTNT33 and
item AFTNT34), and are assumed for purposes of our estimation to occur at
the end of the relevant month. Approximately 80% of the non-failure exits
in our sample were due to merger and acquisition activities.

Among our sample of 870 firms, 50 firms existed before the January, 1971
beginning of our sample period. As explained earlier, start dates are non-
informative in our model. That is, with our probabilistic specification of
exit times, “left-censoring” does not call for an adjustment to the likelihood
function. In practice, however, there is likely to be some influence on failure
intensities, given our other covariates, on survival time. For example, one
might estimate this effect with a baseline hazard rate, which would call for
a left-censorship adjustment for the firms that existed before our sample
period.

Our sample period begins at the first quarter of 1971, and ends10 at the
fourth quarter of 2001. Although CRSP stock-price data are available from
1925, and Compustat quarterly coverage of public firms begins in 1962, only
since 1972 has Compustat reported quarterly data on short-term liabilities,
a relatively important determinant of our distance-to-default covariate.11 In
any case, of the 1, 283 failures in all industries recorded in Compustat, only
9 are reported to have occured before 1971. Our decision to include only
post-1971 data was also followed by Shumway (2001) and Vassalou and Xing
(2003).

3.2 Covariates

We have examined the dependence of estimated failure and other-exit in-
tensities on several types of firm-specific, sector-wide, and macroeconomic
variables. These include:

1. Distance to default, which, roughly speaking, is the number of standard
deviations of quarterly asset growth by which current assets exceed a
standard measure of current liabilities. As explained Section 1.1, this
covariate has theoretical underpinnings in the Black-Scholes-Merton

10We include Compustat and CRSP variables from the fourth quarter of 1970 in order
to estimate the failure intensity during the first quarter of 1971. Likewise, lagged-quarter
variables are used to fit the covariate time-series.

11The quality of pre-1971 Compustat data seems somewhat unreliable. For example,
pre-1971 liability data for many companies are missing.
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structural model of default probabilities. Our method of construction
of this covariate, based on market equity data and Compustat book
liability data, is along the lines of that used by Vassalou and Xing
(2003), Crosbie and Bohn (2002), and Hillegeist, Keating, Cram, and
Lundstedt (2003). Details are given in Appendix A.

2. Personal income growth. As a measure of macroeconomic performance,
we use U.S. personal income growth. Data on quarterly national per-
sonal income (seasonally adjusted) is obtained from the Bureau of Eco-
nomic Analysis’ National Economic Accounts database. Personal in-
come growth is measured in terms of quarterly percentage changes.
McDonald and Van de Gucht (1999) used quarterly industrial pro-
duction growth in the U.S. as a covariate for high-yield bond failure.
Hillegeist, Keating, Cram, and Lundstedt (2003) exploit the national
rate of corporate bankruptcies, in a baseline-hazard-rate model of de-
fault. Our selection of personal income growth is pragmatic; we found
it to be more contemporaraneous with failure rates than GDP growth
rates, which seems to have lagged effects. This may be because, like
bankruptcy, personal income growth lags business-cycle movement.12

3. Sector earnings performance, measured as the sector average across
firms of the ratios of earnings to assets. When used as the only environ-
mental covariate, sector earnings performance is indeed a statistically
significant covariate for failure intensity (although not for other-exit
intensity). When included as an additional covariate together with
distance to default and personal income growth, however, personal in-
come growth is statistically significant, but sector earnings performance
is not.

4. Firm-level Earnings. Another firm-specific covariate is earnings, de-
fined as the ratio of net income (Compustat item 69) to total assets

12Many prior works find a correlation between macroeconomic conditions and failure.
(See Allen and Saunders (2002) for a survey.) For example, Fons (1991), Blume and
Keim (1991), and Jonsson and Fridson (1996) document that aggregate failure rates tend
to be high in the downturn of business cycles. McDonald and Van de Gucht (1999),
Hillegeist, Keating, Cram, and Lundstedt (2003), Chava and Jarrow (2002), and Lennox
(1999) examine macroeconomic effects on individual-level failure or bankruptcies. Pesaran,
Schuermann, Treutler, and Weiner (2003) use a comprehensive set of country-specific
macro variables to estimate the effect of macroeconomic shocks in one region on the credit
risk of a global loan portfolio. See, also, Vassalou and Xing (2002)
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(item 44). In contrast to distance to default, this earnings covariate
comes solely from accounting data. Since there is a lag in recording a
firm’s accounting data, we lag earnings by one period in order to ensure
that it is observable at the beginning of the quarter. (Because of this,
firms enter our study only at the second quarter after their first ap-
pearance in our database.) When there are occassionally missing data
for net income, we substitute values from the most immediately avail-
able past quarters. Earnings is complementary to distance to default,
and a traditional predictor for bankruptcy since Altman (1968). When
not appearing together with distance to default, earnings is a signifi-
cant failure covariate in both logit and duration models, as shown by
Shumway (2001).13 Our definition of earnings is that used by Zmijew-
ski (1984), and close to the profitability covariates defined by Altman
(1993), the ratio of retained earnings to total assets, and the ratio of
earnings before interest and taxes to total assets.

5. Firm Size. Firm size is defined as the logarithm of a firm’s book value of
total assets (Compustat item 44). Firm size may control for unobserved
heterogeneity across firms, since big firms and small firms may have
different market power, management strategies, or borrowing ability,
all of which may affect the risk of failure. For example, it might be
easier for a big firm to re-negotiate with its creditors to postpone the
repayment of debt, or to raise new funds to pay the old debt. In a “too-
big-to-fail” sense, firm size may negatively influence failure intensity.
The statistical significance of size as a determinant of failure risk has
been documented in Shumway (2001).14

Some summary statistics of the covariates that we use are reported in
Table 1. In order to maintain a parsimonious model, our currently reported
estimator of the term structure of conditional failure hazard rates is based
on a two-covariate model, including only personal income growth and, firm
by firm, distance to default.

Regarding our selection of macroeconomic covariates, many alternatives
come to mind. We plan to explore some of these; our current formulation

13Another robustly significant factor according to Shumway’s paper is leverage ratio,
but that has been incorporated in distance to default

14In Shumway (2001), size is defined as the logarithm of a firm’s market capitalization,
relative to the total size of the NYSE and AMEX market.
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Table 1: Covariate summary statistics

variable median mean sdev min max obs.
distance to default 3.74 4.40 3.67 −3.89 73.50 28,612

firm size 4.06 4.30 1.95 0.30 12.28 28,612
firm-level earnings 0.01 −0.01 0.12 −12.78 1.19 28,612

sector earnings 1.39 1.30 0.57 −1.49 2.65 124
personal income growth 1.74 1.88 0.95 −1.38 4.39 124

is preliminary. McDonald and Van de Gucht (1999) use quarterly U.S. in-
dustrial production growth (defined as first difference in logarithms) as a
covariate for failure risk, for a sample of 382 high-yield corporate bonds is-
sued between 1977 and 1989, and followed through 1994. They find that the
conditional likelihood of failure in a given quarter is significantly and nega-
tively correlated with industrial production growth in the current quarter, the
preceding three quarters, and the immediately subsequent quarter.15 A key
covariate in Hillegeist, Keating, Cram, and Lundstedt (2003) is the economy-
wide rate of corporate bankruptcies among publicly-traded firms over the
prior 12 months. Their test of relative information content shows that this
bankruptcy rate provides significant incremental information for forecasting
bankruptcy rates for a sample of 10,845 public firms between 1979 and 1997,
beyond that provided by the “Score” variables of Altman (1968) and Ohlson
(1980), and the Black-Scholes-Merton’s modeled probability of failure, cal-
culated in the manner indicated in Appendix A. Keenan, Sobehart, and
Hamilton (1999) and Helwege and Kleiman (1997) model the forecasting of
aggregate year-ahead U.S. default rates on corporate bonds, using, among
other covariates, credit rating, age of bond, and various macroeconomic vari-
ables, including industrial production, interest rates, trailing default rates,
aggregate corporate earnings, and indicators for recession.

15McDonald and Van de Gucht (1999) also take as covariates for bond default: the
issuer’s rating, coupon rate, issue size, initial maturity, and issuance period (whether
before or after 1985).
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3.3 Covariate Time-Series Models

In this subsection, we specify particular parametric time-series models for the
covariate processes that we use to estimate term structures of conditional
failure probabilities, and then provide the associated maximum-likelihood
estimates.

With our current formulation, we have an extremely high-dimensional
state-vector, consisting of one macroeconomic covariate, personal income
growth, Yt, and the distance to default, Dit, for each firm i of the n firms
that existed during our sample period, 870 in all. Unrestricted by additional
structure, this presents an unwieldy time-series model to estimate. After
preliminary examination of various feasibly estimated alternatives, we have
opted for a simple specification in which each of Yt, D1t, . . . , Dnt is a uni-
variate first-order auto-regressive Gaussian process, allowing for correlation
among their innovations.

Specifically, personal income growth in quarter k, Yk, is assumed to satisfy

Yk+1 − Yk = κY (θY − Yk) + σY εk+1, (19)

where ε1, ε2, . . . is an independent sequence of standard normal variables, and
φ = (θY , κY , σY ) is a parameter vector to be estimated. Here, θY is the long-
run mean, κY is the mean-reversion rate, and σY is the standard deviation
of the innovations.

Similarly, for each firm i, for the quarters in which this firm appears in
our sample,

Di,k+1 −Dik = κD(θDi −Dik) + vwi,k+1, (20)

where {wik : k ≥ 1} is an independent sequence of standard normals, κD is a
mean-reversion parameter common to all firms, v is an innovations standard-
deviation parameter common to all firms, and θDi is a long-run mean 16 pa-
rameter that is specific to firm i. The parameters v and κD characterize
the degree of volatility and mean reversion in this leverage-related variable.
Volatility arises from uncertainty in earnings performance and in the revalu-
ation of assets and liabilities. Mean-reversion arises from leverage targeting,
by which corporations commonly pay out dividends and other forms of distri-
butions when they achieve a sufficiently low degree of leverage, and conversely
attempt to raise capital and retain earnings to a higher degree when their

16This is the long-run mean ignoring the effect of exit.
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leverage introduces financial distress or business inflexibility, as modeled by
Leland (1998) and Collin-Dufresne and Goldstein (2001). We assume homo-
geneity of κD and v across the sector, as we do not have a priori reasons
to assume that different firms in the same sector revert to their targeted
volatility-adjusted leverages differently from one another, and also in order
to maintain a parsimonious model in the face of limited time-series data on
each firm. (Monte Carlo tests confirm significant small-sample bias in MLE
estimators for our sample size that would arise if we estimated firm-by-firm
mean reversion and volatility parameters.)

A key question is how to empirically model the targeted distance to de-
fault, θDi of firm i. Despite the arguments that swayed us to assume homo-
geneity across firms of the mean-reversion and volatility parameters κD and
v, our preliminary analysis showed that applying the same assumption to the
targeted distance to default parameter θDi caused estimated term structures
of future failure probabilities to rise dramatically for firms that had consis-
tently maintained low failure probabilities during our sample period. Perhaps
some firms might derive reputational benefits from low distress risk, or have
firm-specific costs of exposure to financial distress. In the end, we opted
to estimate θDi firm by firm. As a long-run-mean parameter is challenging
to pin down statistically in samples of our size, the standard errors in our
estimates of θDi are responsible for a significant contribution to the standard
errors of our estimated term structures of future failure probabilities.

After specifiying joint normality for the innovations w1k, . . . , wnk and εk,
we tested for, and rejected at conventional confidence levels, positive corre-
lation between wik and εk, at least when that correlation is restricted to be
common across all firms. While it is somewhat counter to our original intu-
ition that firms’ distances to default and national personal income growth do
not show significantly positive correlation, the failure of this correlation to ap-
pear significantly in our sample may be due to mis-specification, for example
in the manner in which correlation arises (perhaps there are substantial lag
effects), or in the assumed homogeneity of correlation across different firms.
In any case, we adopt a model in which ε is independent of w = (w1, . . . , wn).

As for the correlation between wi and wj, we again adopted a simple
homogeneous structure under which

wik = rzk +
√

1 − r2 uik, (21)

where u1k, . . . , unk and zk are independent standard normals, and r is a con-
stant, so that corr (wik, wjk) = r2 whenever i 6= j, and corr(wik, wjl) = 0.

20



We estimated the time-series parameter vector

γ = (κY , θY , σY , κD, v, r, θD1, θD2, . . . , θDn)
′

by maximum likelihood. By independence, the sub-vector φ = (κY , θY , σY )′

can be estimated separately from the sub-vector ξ = (κD, v, r, θD1, θD2, . . . , θDn)
′,

whose high dimension (873 coordinates) required special iterative numerical
treatment.

With quarterly data on personal income growth from 1971 to 2001, the
MLE estimate of φ is:

φ̂ =





θ̂Y
κ̂Y
σ̂Y



 =





1.8901
0.6524
0.8888



 , (22)

with asymptotic variance-covariance matrix estimate

Σ̂φ =





0.0076 0.0002 −0.0000
0.0002 0.0156 −0.0001
−0.0000 −0.0001 0.0033



 . (23)

Using notation similar to that of Section 2.2, for the firms’ distance-to-
default processes, we estimate ξ by maximizing the joint likelihood

L(D; ξ) =
∏

k

fR(k+1),R(k)(D̃k+1 | D̃k; ξ). (24)

The likelihood fR(k+1),R(k)( · | D̃k; γD) is the density of a vector of m(k)
jointly normal random variables with mean vector wk and covariance matrix
Ωk, where m(k) is the number of firms (indexed as firm k(1) through firm
k(m)) existing in both periods k and period k + 1. We have

wk =









θDk(1)κD + (1 − κD)Dk(1)k

θDk(2)κD + (1 − κD)Dk(2)k

. . .
θDk(m)κD + (1 − κD)Dk(m)k









(25)

and

Ωk = v2









1 r2 r2 · · · r2

r2 1 r2 · · · r2

. . . . . . . . . . . . .
r2 r2 r2 · · · 1









m(k)×m(k)

. (26)
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The MLE estimate of the common-parameter vector (κD, v, r)
′ is





κ̂D
v̂
r̂



 =





0.1185
0.9657
0.2684



 . (27)

Because the asymptotic covariance matrix for ξ̂ is 873 × 873, we report in
Appendix C only that portion of it that is relevant for the parameter vector
(θ̂Di, κ̂D, v̂, r̂) associated with a particular example firm.

3.4 Failure and Other-exit Intensity

As for the failure and other-exit intensity parameterizations, we take

Λ((Yk, Dik);µ) = exp (µ0 + µ1Yk + µ2Dik) (28)

A((Yk, Dik); ν) = exp (ν0 + ν1Yk + ν2Dik) , (29)

respectively, for parameter vectors µ = (µ0, µ1, µ2) and ν = (ν0, ν1, ν2) com-
mon to all firms. The sample relationship between distance to default and
failure frequency shown in Appendix A suggests that the assumed form of
exponential dependence of failure intensity on distance to default is at least
reasonable.

The likelihood maximization problems (16) and (17), with parameteri-
zations (28) and (29), are solved numerically using a BFGS quasi-Newton
method, based on a mixed quadratic-and-cubic line-search procedure. We
have tried a range of alternative initial parameter choices to mitigate the
risk of achieving only local maxima. In most cases, the search algorithm
achieved near convergence within fifteen iterations. The intensity parameter-
vector estimates, µ̂ and ν̂, and their estimated asymptotic standard errors,17

are reported in Table 2. The associated asymptotic covariance matrices are
reported in Appendix C.

Parameter estimates for failure intensity are reported in the first column
of Table 2. Consistent with the Black-Scholes-Merton model of default, the
estimated failure intensity is monotonically decreasing in distance to default.
(The estimated standard error implies statistical significance at conventional

17Standard error estimates, shown in parentheses, are asymptotic standard errors ob-
tained from Fisher’s information matrix, associated with (14). These asymptotic estimates
are within about 1% of bootstrap estimates of finite-sample standard errors obtained by
independent resampling firms with replacement.
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Table 2: Parameter Estimates for Exit Intensities

Covariates Failure intensity Other-exit intensity

Constant µ̂0 −4.2017 ν̂0 −3.9855
(0.2465) (0.1254)

Personal income µ̂1 −0.4597 ν̂1 −0.1711
growth (percent) (0.1382) (0.0564)
Distance to default µ̂2 −0.4411 ν̂2 0.0137

(0.0592) (0.0129)

confidence levels.) For example, consider for illustration a firm whose cur-
rent failure intensity is 100 basis points (1%) per quarter. Noting that the
logarithm of the failure intensity is modeled as linear with respect to the co-
variates, we see from Table 2 that the estimated marginal sensitivity of this
firm’s failure intensity is approximately a 44 basis-point increase in quarterly
failure intensity per unit reduction in distance to default, and an estimated
46 basis-point increase in quarterly failure intensity per 1% reduction in U.S.
personal income growth. As we shall see in Section 3.5, while the magnitude
of the impacts of these two covariates on immediate failure likelihoods are
comparable, the conditional likelihood of failure more than 1 year ahead is
estimated to have greater sensitivity with respect to normalized shocks to dis-
tance to default than it does to normalized shocks to personal income growth,
due to the relatively greater time-series persistence of shocks to distance to
default.

With regard to the important roles of both firm-specific leverage and
macroeconomic performance for short-term failure probabilities, our results
are generally consistent with the prior literature, although we use somewhat
different covariates and methods. In particular, distance to default is appar-
ently not a sufficient statistic for conditional failure probabilities, as it would
have been in the Black-Scholes-Merton model. Of course, it is conceivable
that covariate measurement error, small-sample noise, and mis-specification
could have masked the true role of distance to default as a potentially more
powerful covariate. Given the limits of empirical modeling of corporate fail-
ure prediction, however, it seems prudent to incorporate additional covariates
beyond distance to default.

On average across the firms in our study, we attribute approximately 21%
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of the variation (sample variance) of a firm’s failure intensity to variation of
personal income growth, 74% to variation in the firm’s distance to default,
and another 5% to covariation between these two covariates.

The second column of Table 2 reports parameter estimates, and estimates
of their asymptotic standard errors, for the dependence of other-exit intensity
on the covariates. Distance to default does not pass a conventional test of
significance as a determinant of the arrival intensity of other exits (most
of which, about 80% of those in our sample, were mergers or acquisition).
Personal income growth, however, does appear to play a significant role in
the intensity of other exits.18

As a rough diagnostic of the reasonableness of the overall fit of the model,
we compared the actual failure rate in our sample, 0.24% (70 firms out of
28,612 firm-quarters) with the average model-implied expected failure rate
during the study period,

∑T−1
k=0

∑

i∈R(k)

(

1 − e−λ̂i(k)
)

∑T
t=0

∑

i∈R(k) 1
= 0.23%, (30)

where R(k) is the risk set at quarter k, that is the set of firms operating at
quarter k, and λ̂i(k) is the estimated failure intensity of firm i at quarter k.
The denominator is, as for the actual failure rate, merely the sample size.

Appendix B reports an estimated model of failure and other-exit intensi-
ties that is augmented with two additional covariates: firm-level accounting
earnings and firm size. Adding these covariates does not lead to significant
changes, from the basic two-covariate model reported in Table 2, in the coef-
ficients representing the dependence of failure intensity on distance to default
and personal income growth. (It is perhaps noteworthy, however, that with
the addition of earnings and size covariates, the dependence of other-exit in-
tensity on distance to default becomes statistically significant at conventional
confidence levels.)

In the end, we have opted to use the basic two-covariate model for es-
timation of term structures of conditional hazard rates. The four-covariate
model does not offer a better average fit (for example, the associated average
expected failure probability of the four-covariate model, 20 basis points, is
no closer than the 23-basis-point estimate of (30) of the basic model to the
sample failure rate of 24 basis points). Firm size and earnings, moreover, are

18We are not aware of other studies, for example duration models, of merger prediction.
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intricately structurally linked in their time-series behavior with distance to
default, and incorporating the essence of these structural links into a time-
series model for the four covariates seems fraught with mis-specification risk,
not to mention loss of parsimony.19

3.5 Term Structures of Failure Hazards

We are now in a position to obtain maximum-likelihood estimates, by firm,
of the conditional survival and failure probabilities, (1) and (2), for each fu-
ture time horizon. For the i-th firm in our sample surviving to a given time
t, these conditional probabilities, denoted p(Yt, Dit, s;ψi) and q(Yt, Dit, s;ψi)
respectively, depend on the parameter vector ψi = (µ, ν, φ, κD, v, θDi) as-
sociated with firm i. Under standard technical conditions, the maximum-
likelihood estimators of these conditional probabilities at time horizon s are
p(Yt, Dit, s; ψ̂i) and q(Yt, Dit, s; ψ̂i) respectively, where ψ̂i is the maximum-
likelihood estimator of ψi.

In order to illustrate the results more meaningfully, we will report the
estimated probability density ps(Xt, s; ψ̂i) (partial of p( · ) with respect to
time horizon s) of the failure time,20 and the estimated failure hazard rate

H(Yt, Dit, s; ψ̂i) =
ps(Yt, Dit, s; ψ̂i)

q(Yt, Dit, s; ψ̂i)
. (31)

We emphasize that this failure hazard rate at time horizon s conditions
on survival to time s from both failure and from other forms of exit. (The
total hazard rate is, notationally suppressing all arguments of the survival
function q( · ) except for the time horizon s, given as usual by −qs(s)/q(s).)

As an illustration, we fix a particular time t, the end of our sample period
at the fourth quarter of 2001, fix a particular firm, General Binding Corpora-
tion (GBC), calculate GBC’s estimated conditional term structure of failure
hazard rates, and show how that term structure responds to changes to the
business-cycle variable Yt and to changes in GBC’s distance to default, Dit.

19See Chava and Jarrow (2002) for additional discussion of the relative importance of
firm-specific covariates.

20This density is most easily calculated by differentiation through the expectation, as

E
(

exp(−
∫

t+s

t
[λ(u) + α(u)] du)λ(t+ s) |Xt

)

, which we compute by Monte-Carlo simula-

tion. We emphasize that this density is “improper” (integrates over all s to less than one)
because of other exit events.
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Figure 1: Distance to default of General Binding Corporation, quarters from 1973:4 to
2001:4.

GBC is a natural choice for illustration, given that it has a non-trivial level
of credit risk at time t (with a current Moodys rating of B3, set on December
16, 1999), and is a reasonably closely followed firm that existed for 113 quar-
ters, most of our sample period. GBC, based in Illinois, is engaged in the
design, manufacture, and distribution of office equipment, related supplies,
and laminating equipment and films. Founded in 1947, GBC first appears
in the Compustat database at the fourth quarter of 1973. At the end of
2002, GBC had approximately 4,250 employees, a market capitalization of
$208 million. The sample path of the distance to default of GBC during our
sample period is illustrated in Figure 1. The maximum likelihood estimate
of ΘDi for GBC is 4.72.

As of the end of 2001, GBC’s estimated term structure of failure hazard
rates is shown in Figure 2. The asymptotic 95% confidence intervals of these
estimated hazard rates are shown with dashed lines, and obtained by the
usual “delta” chain-rule calculation. That is, the variance of H(Yt, Dit, s; ψ̂i)
due to parameter uncertainty is estimated as HψΣH

>
ψ , where Hψ denotes

the partial of H with respect to the parameter vector ψi, and where Σ is the
asymptotic estimate of the covariance matrix of ψ̂i reported in Appendix C,
which contains additional details on this.
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Quarters ahead

Figure 2: Annualized GBC failure hazard rates, with personal income growth and
distance to default measured at the fourth quarter of 2001: when Yt = 0.2197% and
Dit = 1.51, shown with dashed lines representing asymptotic estimates of 95% confidence
intervals.

The estimated term structure of failure hazard rates of GBC is downward-
sloping because, on the conditioning date t at the end of 2001, the growth
rate Y (t) of personal income, at 0.2197%, was well below its estimated long-
run mean, 1.8901%, and because GBC’s distance to default, Dit = 1.51, was
also well below its estimated “target,” θ̂Di = 4.72. The estimated reversion
of these covariates toward their respective long-run means causes a reduction
in the estimated mean failure arrival rate s quarters ahead, H(Yt, Dit, s; ψ̂i),
conditional on survival to that time, as the time horizon s increases. There
is also a small downward effect on this curve due to covariate uncertainty,
based on the effect of Jensen’s Inequality.

Figures 3 and 4 show the hypothetical effects on GBC’s hazard rates of
varying the initial conditions Y (t) and Dit, respectively, from their estimated
long run means to one-standard deviation above and below their respective
long-run means. Specifically, these shifts are the estimated standard devia-
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Figure 3: Annualized GBC failure hazard rates, with distance to default set hypothet-
ically at the estimated long-run mean distance to default (θ̂Di = 4.72), and with U.S.

personal income growth at three hypothetical levels, the long run mean (θ̂Y = 1.89%,
solid line); one standard deviation dY of its stationary distribution above its long-run

mean (θ̂Y +dY = 2.84%, dashed line) and one standard deviation below its long-run mean

(θ̂Y − dY = 0.94%, solid line with asterisks).

tions21 of the stationary distributions of Y and Di, which are dY = 0.95% and
dDi = 2.05, respectively. Comparing Figure 3 and 4 shows that, mainly due
to its greater time-series presistence, varying the distance to default has a
relatively greater effect than varying U.S. personal income growth on GBC’s
hazard rate for failure more than one year into the future. (We recall that
κ̂Y = 0.6524, while κ̂D = 0.1192.) Figure 5 shows the effects of moving both
covariates above, and both covariates below, their respective long-run means.

Figure 6 shows the estimated probability density function of GBC’s failure
time (solid line) setting the initial conditions for personal income growth and

21For example, with a mean-reversion parameter of κY and an innovation standard
deviation of σY , the stationary distribution of Y has a standard deviation whose maximum
likelihood estimate is dY = σ̂2

Y
/(1 − (1 − κ̂Y )2).
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Figure 4: Annualized GBC failure hazard rates, at a hypothetical level of U.S. personal
income growth equal to its estimated long-run mean (θ̂Y = 1.89%), and with GBC’s

distance to default at three hypothetical levels: the estimated long-run mean, (θ̂Di = 4.72,
solid line); at one standard deviation dDi of its stationary distribution above its long-run

mean, (θ̂Di + dDi = 7.24, solid lines with asterisks); and at an estimate of one standard

deviation below its long run mean (θ̂Di − dDi = 3.13, dashed line).

GBC’s distance to default at their respective long run means. Figure 6 also
shows what this failure-time density would be if one were to ignore the effect
of other exits (that is, if one assumes that the other-exit intensity parameter
vector ν is zero). For example, GBC obviously cannot itself fail more than
one year into the future in the event that it is merged with another firm in
less than one year.

In summary, the shape of the term structure of GBC’s failure hazard rates
for future quarters, conditioning on GBC’s current distance to default and on
current U.S. personal income growth, clearly reflects the time-series dynamics
of these covariates over the coming quarters. The counter-cyclical behavior of
failure probabilities is already well documented in such prior studies as Fons
(1991), Blume and Keim (1991), Jonsson and Fridson (1996), McDonald
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Figure 5: Annualized GBC failure hazard rates. Solid line: covariates initialized at
their respective long-run means, θ̂Di = 4.72 and θ̂Y = 1.89. Dashed line: covariates each
initialized one standard deviation (of the respective stationary distributions) above long-
run means. Solid line with asterisks: covariates initialized one standard deviation below
long-run means.

and Van de Gucht (1999), Hillegeist, Keating, Cram, and Lundstedt (2003),
Chava and Jarrow (2002), and Vassalou and Xing (2003). The main marginal
contribution of this paper is the ability to estimate the influence of firm-
specific and macro-covariates on the likelihood of corporate failure, not just
during the subsequent time period, but also for subsequent quarters into the
future.

4 Discussion and Additional Applications

This paper offers an econometric model, and an empirical implementation
of this method for the U.S. industrial machinery and instruments sector, for
estimating the term structure of corporate failure probabiliites over multi-
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Figure 6: Estimated density of GBC failure time. Solid line: the estimated failure time
density ps(θ̂Y , θ̂Di, s; ψ̂i) of GBC. Dashed line: the estimated failure-time density obtained
by ignoring (setting to zero) the intensity of other exits. Both cases take the covariates at
their respective estimated long-run means.

ple future periods, conditional on firm-specific and macroeconomic covari-
ates. The method, under its probabilistic assumptions, allows one to com-
bine traditional duration analysis of the dependence of event intensities on
time-varying covariates with conventional time-series analysis of covariates,
in order to obtain maximum-likelihood estimation of multi-period failure
probabilities.

Applying this model to data on U.S. firms in the industrial machinery and
instrument sector over the years 1971 to 2001, we find that the estimated term
structures of failure hazard rates of individual firms in this sector depend
significantly, in level and shape, on the current state of the economy, and
on the current leverage of the firm, as captured by the popular volatility-
adjusted leverage measure, distance to default. For some firms, variation in
distance to default has a greater relative effect on the term structure of future
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failure hazard rates than does a comparatively sized change in the business-
cycle covariate, U.S. personal income growth, especially for the conditional
likelihood of failure over long future time periods.

Our methodology could be applied to other settings involving the forecast-
ing of discrete events over multiple future periods, in which the time-series
behavior of covariates could play a significant role, for example: mortgage
prepayment and default, consumer default, initial and seasoned equity offer-
ings, merger, acquisition, and the exercise of real timing options, such as the
option to change or abandon a technology.
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Appendices

A Construction of distance to default

In constructing the distance to default, we follow a recipe similar to those of
Vassalou and Xing (2003), Crosbie and Bohn (2002), and Hillegeist, Keating,
Cram, and Lundstedt (2003). For a given firm, the distance to default is the
number of standard deviations of asset growth by which a firm’s market value
of assets exceeds a liability measure. Formally, for a given firm at time t, the
distance to default is

Dt =
ln
(

Vt

Lt

)

+
(

µA − 1
2
σ2
A

)

T

σA
√
T

, (A.1)

where Vt is the market value of the firm’s assets at time t and Lt is a liability
measure, defined below, that is often known in industry practice as the “de-
fault point”. Here, µA and σA measure the firm’s mean rate of asset growth
and asset volatility, respectively, and T is a chosen time horizon, typically
taken to be 4 quarters.

The default point Lt, following the standard established by Moodys KMV
(see Crosbie and Bohn (2002), as followed by Vassalou and Xing (2003)), is
measured as the firm’s book measure of short-term debt (“Debt in current
liabilities”, Compustat item 45), plus one half of its long-term debt (item
51), based on its quarterly accounting balance sheet. If these accounting
measures of debt are missing in the Compustat quarterly file, but available
in the annual file, we replace the missing data with the associated annual
debt data (Compustat items 34 and item 9 for short-term and long term
debt, respectively). Of 28, 612 firm-quarters in our sample, there are 3, 086
firm-quarters in which we use annual debt data to approximate quarterly
debt data in this way.

We estimate the assets Vt and volatility σA according to a call-option
pricing formula, following the theory of Merton (1974), under which equity
may be viewed as a call option on the value of a firm’s assets, Vt. In this
setting, the market value of equity, as Wt, is the option price at strike Lt and
time T to expiration.

We take the initial asset value Vt to be the sum of Wt (end-of-quarter
stock price times number of shares outstanding, from CRSP database) and
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the book value of total debt (the sum of short-term debt and long-term debt
from Compustat). We take the risk-free return r to be the one-year T-bill
rate. We solve for the asset value Vt and asset volatility σA by iteratively
applying the equations:

Wt = VtΦ(d1) − Lte
−rTΦ(d2) (A.2)

σA = sdev (ln(Vt) − ln(Vt−1)) , (A.3)

where

d1 =
ln
(

Vt

Lt

)

+ (r + 1
2
σ2
A)T

σA
√
T

, (A.4)

d2 = d1 − σA
√
T , and Φ( · ) is the standard-normal cumulative distribution

function, and sdev( · ) denotes sample standard deviation. Equation (A.2) is
the call-option pricing formula of Black and Scholes (1973), allowing, through
(A.3), an estimate of the asset volatility σA. For simplicity, by using (A.3), we
avoided the calculation of the volatility implied by the option pricing model
(See Crosbie and Bohn (2002) and Hillegeist, Keating, Cram, and Lundstedt
(2003) for this alternative approach), but instead estimated σA as the sample
standard deviation of the time series of asset-value growth, ln(Vt)− ln(Vt−1).
A histogram22 of our sample of distances to default is provided in Figure 7.

Our construction of distance to default has the property that, in the
theoretical setting of Merton (1974), a firm whose current distance to default
isD has a conditional probability (given all available information) of failure in
one year of Φ(−D), where Φ is the cumulative standard-normal distribution
function. Figure 8 shows the average realtionship in our sample between
distance to default and failure rate. For the purpose of this figure, distance
to default is “bucketed” into intervals of length 0.25. The denominator for
a given bucket is the number of firm-quarters with distance ot default in
the associated interval; the numerator is the number of failures from that
bucket within the subsequent quater. We did not include in Figure 8 those
buckets with distances to default of less than −2, which constitutes 0.8% of
the firm-quarters in our sample. Figure 8 illustrates an average relationship
between distance to default and failure frequency that is roughly consistent
with our assumption that failure intensity depends exponentially on distance
to default, fixing other covariates.

22Of all 28, 612 firm-quarters, four had distances to default larger than 40. These are
not shown in Figure 7.
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Figure 7: Histogram of distance to default for firm-quarters in the sample.

B Four-covariate intensity model

As a check of the robustness of our model of failure and other-exit intensi-
ties, in this appendix, we examine the implications of adding two covariates,
earnings and firm size.

Instead of assuming (28) and (29), we specify failure intensity and other-
exit intensity to be the form:

Λ((Yk, Dik, Rik, Sik);µ) = eµ0+µ1Yk+µ2Dik+µ3Rik+µ4Sik (B.1)

A((Yk, Dik, Rik, Sik); ν) = eν0+ν1Yk+ν2Dik+ν3Rik+ν4Sik , (B.2)

where Rik is the earnings (relative to assets) of firm i in quarter k, and Sik
is the size of firm i in quarter k, as explained in Section 3.2. Maximizing a
likelihood function analogous to that of the two-covariate model, we obtain
the coefficient estimates reported in Table 3. Compared with the results in
Table 2, the coefficient estimates for the dependence of failure intensity on
distance to default and personal income growth have not changed dramati-
cally. As for the other-exit intensity, although the coefficient of distance to
default is not statistically significant different from zero in the two-covariate
model, this coefficient is significantly positive in the four-covariate model,
the most notable change that we observed.
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Figure 8: Empirical mapping from distance to default to failure intensity.

The two new covariates, earnings and firm size, show a statistically signif-
icant effect on failure intensity and other-exit intensity. Consistent with our
expectation, firms with a higher earnings ratio are less likely to go bankrupt,
and large firms have a larger chance to survive. It is also notable that high-
profit and big firms are less likely to be merged or acquired. We plan to
explore the time series of these and other covariates, and further address
their effects on failure intensity.

C Asymptotic covariances of MLEs

The confidence intervals plotted in Figure 2 are, as explained in the main text,
based on the asymptotic standard errors obtained from the Delta method.
For this, we require an estimate of the covariance matrix Σ of the MLE
estimator ψ̂i of the parameters affecting the hazard rates of firm i, which in
this case is General Binding Corporation. We let ψi = (γi, µ, ν), where γi is
the vector of parameters of the time-series model for (Yt, Dit), and where µ
and ν parameterize the failure and other-exit intensities, respectively, as in
Section 2.
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Table 3: Parameter Estimates for Exit Intensities

Covariate Failure intensity Other-exit intensity

Constant µ̂0 −3.1718 ν̂0 −3.5550
(0.3566) (0.1626)

Personal income growth µ̂1 −0.4979 ν̂1 −0.1933
(0.1479) (0.0560)

Distance to default µ̂2 −0.4473 ν̂2 0.0289
(0.0699) (0.0111)

Firm-level earnings µ̂3 −0.3752 ν̂3 −0.3613
(0.0976) (0.0570)

Firm size µ̂4 −0.2910 ν̂4 −0.1136
(0.0785) (0.0280)

Asymptotic standard errors are in parentheses.

Fixing Yt, Dit, and s, we write

H(Yt, Dit, s;ψi) = G(ψi). (C.1)

The failure probability p(Yt, Dit, s;ψi), failure-time density ps(Yt, Dit, s;ψi),
survival probability q(Yt, Dit, s;ψi), and failure hazard rate H(Yt, Dit, s;ψi)
are all continuous with respect to the parameter vector ψi, by the dominated
convergence theorem, using the fact that e−

R

t+s

t
[λ(u)+α(u)] du is strictly positive

and bounded by 1, using the continuity of the probability distribution of the
covariate process with respect to the parameters, using the monotonicity of
the failure and other-exit time intensities with respect to the parameters,
and finally using the fact that λ(t + s), being the double-exponential of a
normal variable, is integrable. Thus, under the consistency assumption that
ψ̂i converges in distribution with sample size to ψi, the continuity of G( · )
implies that the maximum-likelihood estimator G(ψ̂i) of G(ψi) is also con-
sistent. Moreover, with the addition of differentiability and other technical
conditions, G(ψ̂i) has the asymptotic variance estimate ∇G(ψi)Σ∇G(ψi)

>,
where ∇G( · ) is the gradient of G and where

Σ =





Σγi
0

Σµ

0 Σν



 (C.2)
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is determined by the asymptotic covariance matrices Σγi
, Σµ, and Σν of γi, µ,

and ν, respectively. These asymptotic covariance matrices are obtained by
the usual method of inverting the Hessian matrix of the likelihood functions,
evaluated at the parameter estimates.

With regard to Σγi
, we have already presented the estimated asymp-

totic covariances of (κ̂Y , θ̂Y , σ̂Y ) in Section 3.3. The asymptotic variance-
covariance matrix of (θ̂Di, κ̂D, v̂, r̂), ΣDi, is part of the full variance-covariance
matrix for all firms’ θ̂Di and parameter estimates (κ̂D, v̂, r̂). For firm GBC,
the estimate of ΣDi is:

Σ̂Di =









5931 0.3340 0.7416 2.6375
0.3340 0.0962 0.0003 0.0012
0.7416 0.0003 0.3948 0.7936
2.6375 0.0012 0.7936 3.0292









× 10−4. (C.3)

Combine this and the result for Σ̂φ as in equation (23), we obtain the asymp-
totic covariance for γi as:

Σ̂γi
=

(

Σ̂φ 0

0 Σ̂Di

)

. (C.4)

For the two-covariate model of failure intensity, the asymptotic estima-
tion of covariance matrix corresponding to the parameters (µ0, µ2, µ1), the
coefficients for constant, distance to default and personal income growth, is

Σ̂µ =





0.0607 −0.0039 −0.0274
−0.0039 0.0035 −0.0003
−0.0274 −0.0003 0.0191



 . (C.5)

For the other-exit intensity parameters, the aysmptotic covariance matrix
of the MLE estimators of the parameters (ν0, ν2, ν1) is

Σ̂ν =





0.0157 −0.0008 −0.0055
−0.0008 0.0002 0.0000
−0.0055 0.0000 0.0032



 . (C.6)
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